新編一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第十二節(jié) 導(dǎo)數(shù)的綜合應(yīng)用 Word版含解析
《新編一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第十二節(jié) 導(dǎo)數(shù)的綜合應(yīng)用 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《新編一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第十二節(jié) 導(dǎo)數(shù)的綜合應(yīng)用 Word版含解析(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 課時規(guī)范練 A組 基礎(chǔ)對點練 1.已知函數(shù)f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,則實數(shù)m的取值范圍是( ) A. B. C.(-∞,2] D.(-∞,2) 解析:f′(x)=x2-4x,由f′(x)>0,得x>4或x<0. ∴f(x)在(0,4)上單調(diào)遞減,在(4,+∞)上單調(diào)遞增, ∴當(dāng)x∈[0,+∞)時,f(x)min=f(4). ∴要使f(x)+5≥0恒成立,只需f(4)+5≥0恒成立即可,代入解之得m≥. 答案:A 2.對?x∈R,函數(shù)f(x)的導(dǎo)數(shù)存在,若f′(x)>f(x),且a>0,則以下說法正確的是(
2、 )
A.f(a)>ea·f(0) B.f(a)
3、(x)>f(0)=0-1=-1, ∴a的取值范圍為(-1,+∞),故選D. 答案:D 4.某工廠要圍建一個面積為512平方米的矩形堆料場,一邊可以利用原有的墻壁,其他三邊需要砌新的墻壁,當(dāng)砌新的墻壁所用的材料最省時,堆料場的長和寬分別為( ) A.32米,16米 B.30米,15米 C.40米,20米 D.36米,18米 解析:要求材料最省,則要求新砌的墻壁總長最短,設(shè)堆料廠的寬為x米,則長為米,因此新墻總長為L=2x+(x>0),則L′=2-,令L′=0,得x=±16.又x>0,∴x=16.則當(dāng)x=16時,L取得極小值,也是最小值,即用料最省,此時長為=32(米).故選A.
4、
答案:A
5.某銀行準(zhǔn)備設(shè)一種新的定期存款業(yè)務(wù),經(jīng)預(yù)測,存款量與存款利率的平方成正比,比例系數(shù)為k(k>0),貸款的利率為4.8%,假設(shè)銀行吸收的存款能全部放貸出去.若存款利率為x(x∈(0,0.048)),則銀行獲得最大收益的存款利率為( )
A.3.2% B.2.4%
C.4% D.3.6%
解析:依題意知,存款量是kx2,銀行應(yīng)支付的利息是kx3,銀行應(yīng)獲得的利息是0.048kx2,所以銀行的收益y=0.048kx2-kx3,故y′=0.096kx-3kx2,令y′=0,得x=0.032或x=0(舍去).因為k>0,所以當(dāng)0 5、<0.048時,y′<0.因此,當(dāng)x=0.032時,y取得極大值,也是最大值,即當(dāng)存款利率定為3.2%時,銀行可獲得最大收益.
答案:A
6.已知函數(shù)f(x)=m-2ln x(m∈R),g(x)=-,若至少存在一個x0∈[1,e],使得f(x0) 6、m的取值范圍是.故選B.
答案:B
7.若函數(shù)f(x)=xex-a有兩個零點,則實數(shù)a的取值范圍為( )
A.--
C.-e0,所以由g′(x)=0,解得x=-1,
當(dāng)x>-1時,g′(x)>0,函數(shù)g(x)為增函數(shù);當(dāng)x<-1時,g′(x)<0,函數(shù)g(x)為減函數(shù),所以當(dāng)x=-1時函數(shù)g(x)有最小值;g(-1)=-e-1=-.畫出函數(shù)y=xex的圖象,如圖所示,顯然當(dāng)-
7、,1]時,不等式ax3-x2+4x+3≥0恒成立,則實數(shù)a的取值范圍是( )
A.[-5,-3] B.
C.[-6,-2] D.[-4,-3]
解析:當(dāng)x∈(0,1]時,得a≥-33-42+,
令t=,則t∈[1,+∞),a≥-3t3-4t2+t,
令g(t)=-3t3-4t2+t,t∈[1,+∞),則g′(t)=-9t2-8t+1=-(t+1)·(9t-1),顯然在[1,+∞)上,g′(t)<0,g(t)單調(diào)遞減,
所以g(t)max=g(1)=-6,因此a≥-6;同理,當(dāng)x∈[-2,0)時,
得a≤-2.
由以上兩種情況得-6≤a≤-2,顯然當(dāng)x=0時也成立,
故實 8、數(shù)a的取值范圍為[-6,-2].
答案:C
9.若函數(shù)f(x)=2x+sin x對任意的m∈[-2,2],f(mx-3)+f(x)<0恒成立,則x的取值范圍是__________.
解析:f(-x)=-f(x),f(x)為奇函數(shù),
若x∈R時,f′(x)=2+cos x>0恒成立,
∴f(x)在R上為增函數(shù),
又f(x)為奇函數(shù),故
在定義域內(nèi)為增函數(shù),∴f(mx-3)+f(x)<0可變形為f(mx-3) 9、<0,g(-2)<0,解得-3 10、(x-1) 11、>0,
∴h(x)在(1,+∞)上單調(diào)遞增.
∵h(3)=1-ln 3<0,h(4)=2-2ln 2>0,
∴存在x0∈(3,4)使h(x0)=0,即g′(x0)=0.
即當(dāng)1 12、 x.
(1)若在函數(shù)f(x)的定義域內(nèi)存在區(qū)間D,使得該函數(shù)在區(qū)間D上為減函數(shù),求實數(shù)m的取值范圍;
(2)當(dāng)0 13、1.
從而方程mx2-x+ln x=2mx-m-1在(0,+∞)上有且只有一解.
設(shè)g(x)=mx2-x+ln x-(2mx-m-1),
則g (x)在(0,+∞)上有且只有一個零點.
又g(1)=0,故函數(shù)g(x)有零點x=1.
則g′(x)=2mx-1+-2m==.
當(dāng)m=時,g′(x)≥0,
又g(x)不是常數(shù)函數(shù),故g(x)在(0,+∞)上單調(diào)遞增.
∴函數(shù)g(x)有且只有一個零點x=1,滿足題意.
當(dāng)0 14、′(x),g(x)的變化情況如下表:
x
(0,1)
1
g′(x)
+
0
-
0
+
g(x)
極大值
極小值
根據(jù)上表知g<0.
又g(x)=mx+m+ln x+1.
∴g>0,
故在上,函數(shù)g(x)又有一個零點,不滿足題意.
綜上所述,m=.
B組 能力提升練
1.若不等式2xln x≥-x2+ax-3對x∈(0,+∞)恒成立,則實數(shù)a的取值范圍是( )
A.(-∞,0) B.(-∞,4]
C.(0,+∞) D.[4,+∞)
解析:2xln x≥-x2+ax-3,
則a≤2ln x+x+,設(shè)h(x)=2l 15、n x+x+(x>0),則h′(x)=.
當(dāng)x∈(0,1)時,h′(x)<0,函數(shù)h(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時,h′(x)>0,函數(shù)h(x)單調(diào)遞增,所以h(x)min=h(1)=4,所以a≤h(x)min=4.
答案:B
2.(20xx·運城模擬)已知函數(shù)f(x)=ln x+tan α的導(dǎo)函數(shù)為f′(x),若方程f′(x)=f(x)的根x0小于1,則α的取值范圍為( )
A. B.
C. D.
解析:因為f(x)=ln x+tan α,所以f′(x)=,
令f(x)=f′(x),得ln x+tan α=,
即tan α=-ln x.設(shè)g(x)=-ln x, 16、顯然g(x)在(0,+∞)上單調(diào)遞減,
而當(dāng)x→0時,g(x)→+∞,
所以要使?jié)M足f′(x)=f(x)的根x0<1,只需tan α>g(1)=1,
又因為0<α<,所以α∈.
答案:A
3.(20xx·宜州調(diào)研)設(shè)f(x)=|ln x|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個零點,則實數(shù)a的取值范圍是( )
A. B.
C. D.
解析:令y1=f(x)=|ln x|,y2=ax,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個零點,則y1=f(x)=|ln x|與y2=ax的圖象(圖略)在區(qū)間(0,4)上有三個交點.由圖象易知,當(dāng)a≤0時,不符合 17、題意;當(dāng)a>0時,易知y1=|ln x|與y2=ax 的圖象在區(qū)間(0,1)上有一個交點,所以只需要y1=|ln x|與y2=ax的圖象在區(qū)間(1,4)上有兩個交點即可,此時|ln x|=ln x,由ln x=ax,得a=.令h(x)=,x∈(1,4),則h′(x)=,故函數(shù)h(x)在(1,e)上單調(diào)遞增,在(e,4)上單調(diào)遞減,h(e)==,h(1)=0,h(4)==,所以0).若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,則a的取值范圍是( )
A. B.
C.(1,2) D.(0,+∞ 18、)
解析:f′(x)=x2+(1-a)x-a=(x+1)(x-a).
由f′(x)=0,得x=-1或a(a>0).
當(dāng)x變化時f′(x)與f(x)的變化情況如表:
x
(-∞,-1)
-1
(-1,a)
a
(a,+∞)
f′(x)
+
0
-
0
+
f(x)
極大值
極小值
故函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,-1),(a,+∞);單調(diào)遞減區(qū)間是(-1,a).
可知函數(shù)f(x)在區(qū)間(-2,-1)內(nèi)單調(diào)遞增;在區(qū)間(-1,0)內(nèi)單調(diào)遞減.
從而函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,
當(dāng)且僅當(dāng)解得0
19、值范圍是.
答案:A
5.(20xx·鄭州模擬)若函數(shù)f(x)=x2+-aln x(a>0)有唯一的零點x0,且m 20、),所以m=2,n=3,所以m+n=5.
答案:C
6.若函數(shù)f(x)=+1(a<0)沒有零點,則實數(shù)a的取值范圍為__________.
解析:f′(x)==.
當(dāng)a<0時,f′(x),f(x)的變化情況如下表:
x
(-∞,2)
2
(2,+∞)
f′(x)
-
0
+
f(x)
極小值
若使函數(shù)f(x)沒有零點,
當(dāng)且僅當(dāng)f(2)=+1>0,解得a>-e2,
所以此時-e2
21、4,4]恒成立,則實數(shù)m的取值范圍是__________.
解析:令h(x)=g(x)-f(x)
=x3-x2-3x+m,
則h′(x)=(x-3)(x+1).
所以當(dāng)-4 22、,則實數(shù)a的取值范圍是__________.
解析:當(dāng)x∈[1,2]時,f(x)=|x3-ax|,
由f(x)<2可得-2
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025《增值稅法》高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 深入學(xué)習(xí)《中華人民共和國科學(xué)技術(shù)普及法》推進實現(xiàn)高水平科技自立自強推動經(jīng)濟發(fā)展和社會進步
- 激揚正氣淬煉本色踐行使命廉潔從政黨課
- 加強廉潔文化建設(shè)夯實廉政思想根基培育風(fēng)清氣正的政治生態(tài)
- 深入學(xué)習(xí)2024《突發(fā)事件應(yīng)對法》全文提高突發(fā)事件預(yù)防和應(yīng)對能力規(guī)范突發(fā)事件應(yīng)對活動保護人民生命財產(chǎn)安全
- 2023年四年級數(shù)學(xué)上冊第一輪單元滾動復(fù)習(xí)第10天平行四邊形和梯形作業(yè)課件新人教版
- 2023年四年級數(shù)學(xué)上冊第14單元階段性綜合復(fù)習(xí)作業(yè)課件新人教版
- 2023年四年級數(shù)學(xué)上冊易錯清單十五課件新人教版
- 2023年四年級數(shù)學(xué)上冊易錯清單七課件西師大版
- 2023年五年級數(shù)學(xué)下冊易錯清單六作業(yè)課件北師大版
- 2023年五年級數(shù)學(xué)下冊易錯清單二作業(yè)課件北師大版
- 2023年五年級數(shù)學(xué)下冊四分數(shù)的意義和性質(zhì)第10課時異分母分數(shù)的大小比較作業(yè)課件蘇教版
- 2023年五年級數(shù)學(xué)下冊周周練四作業(yè)課件北師大版
- 2023年五年級數(shù)學(xué)下冊六折線統(tǒng)計圖單元復(fù)習(xí)卡作業(yè)課件西師大版
- 2023年四年級數(shù)學(xué)上冊6除數(shù)是兩位數(shù)的除法單元易錯集錦一作業(yè)課件新人教版