2018年秋高中數(shù)學 第二章 隨機變量及其分布 2.2 二項分布及其應(yīng)用 2.2.3 獨立重復(fù)試驗與二項分布學案 新人教A版選修2-3.doc
《2018年秋高中數(shù)學 第二章 隨機變量及其分布 2.2 二項分布及其應(yīng)用 2.2.3 獨立重復(fù)試驗與二項分布學案 新人教A版選修2-3.doc》由會員分享,可在線閱讀,更多相關(guān)《2018年秋高中數(shù)學 第二章 隨機變量及其分布 2.2 二項分布及其應(yīng)用 2.2.3 獨立重復(fù)試驗與二項分布學案 新人教A版選修2-3.doc(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2.2.3 獨立重復(fù)試驗與二項分布 學習目標:1.理解n次獨立重復(fù)試驗的模型.2.理解二項分布.(難點)3.能利用獨立重復(fù)試驗的模型及二項分布解決一些簡單的實際問題.(重點) [自 主 預(yù) 習探 新 知] 1.n次獨立重復(fù)試驗 一般地,在相同條件下重復(fù)做的n次試驗稱為n次獨立重復(fù)試驗. 思考:怎樣正確理解獨立重復(fù)試驗? [提示] (1)獨立重復(fù)試驗滿足的條件: 第一:每次試驗是在同樣條件下進行的; 第二:各次試驗中的事件是相互獨立的; 第三:每次試驗都只有兩種結(jié)果,即事件要么發(fā)生,要么不發(fā)生. (2)獨立重復(fù)試驗的實際原型是有放回地抽樣檢驗問題,但在實際應(yīng)用中,從大批產(chǎn)品中抽取少量樣品的不放回檢驗,可以近似地看作此類型,因此獨立重復(fù)試驗在實際問題中應(yīng)用廣泛. 2.二項分布 一般地,在n次獨立重復(fù)試驗中,用X表示事件A發(fā)生的次數(shù),設(shè)每次試驗中事件A發(fā)生的概率為p,則P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.此時稱隨機變量X服從二項分布,記作X~B(n,p),并稱p為成功概率. 思考:二項分布與兩點分布有什么關(guān)系? [提示] (1)兩點分布的試驗次數(shù)只有一次,試驗結(jié)果只有兩種:事件A發(fā)生(X=1)或不發(fā)生(X=0);二項分布是指在n次獨立重復(fù)試驗中事件A發(fā)生的次數(shù)X的分布列,試驗次數(shù)為n次(每次試驗的結(jié)果也只有兩種:事件A發(fā)生或不發(fā)生),試驗結(jié)果有n+1種:事件A恰好發(fā)生0次,1次,2次,…,n次. (2)二項分布是兩點分布的一般形式,兩點分布是一種特殊的二項分布,即n=1的二項分布. [基礎(chǔ)自測] 1.判斷(正確的打“√”,錯誤的打“”) (1)獨立重復(fù)試驗每次試驗之間是相互獨立的. ( ) (2)獨立重復(fù)試驗每次試驗只有發(fā)生與不發(fā)生兩種結(jié)果. ( ) (3)獨立重復(fù)試驗各次試驗發(fā)生的事件是互斥的. ( ) [解析] (1)√ 在獨立重復(fù)試驗中,試驗是“在相同的條件下”進行的,各次試驗的結(jié)果不會受其他試驗結(jié)果的影響,彼此相互獨立. (2)√ 獨立重復(fù)試驗的結(jié)果只有兩種,即事件要么發(fā)生,要么不發(fā)生. (3) 獨立重復(fù)試驗中,各次試驗中的事件相互獨立,故說試驗事件互斥是錯誤的. [答案] (1)√ (2)√ (3) 2.任意拋擲三枚均勻硬幣,恰有2枚正面朝上的概率為( ) 【導(dǎo)學號:95032166】 A. B. C. D. B [拋一枚硬幣,正面朝上的概率為,則拋三枚硬幣,恰有2枚朝上的概率為P=C=.] 3.已知隨機變量X服從二項分布,X~B,則P(X=2)等于_____. [P(X=2)=C=.] 4.姚明在比賽時罰球命中率為90%,則他在3次罰球中罰失1次的概率是________. 【導(dǎo)學號:95032167】 0.243 [設(shè)隨機變量X表示“3次罰球,中的次數(shù)”,則X~B(3,0.9),所以他在3次罰球中罰失1次的概率為P(X=2)=C0.92(1-0.9)=0.243.] [合 作 探 究攻 重 難] 獨立重復(fù)試驗概率的求法 現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲. (1)求這4個人中恰有2人去參加甲游戲的概率; (2)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率. [解] 依題意,這4個人中,每個人去參加甲游戲的概率為,去參加乙游戲的概率為. 設(shè)“這4個人中恰有i人去參加甲游戲”為事件Ai(i=0,1,2,3,4). 則P(Ai)=C. (1)這4個人中恰有2人去參加甲游戲的概率 P(A2)=C=. (2)設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則B=A3∪A4.由于A3與A4互斥,故 P(B)=P(A3)+P(A4)=C+C=. 所以,這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為. [規(guī)律方法] 獨立重復(fù)試驗概率求法的三個步驟 1.判斷:依據(jù)n次獨立重復(fù)試驗的特征,判斷所給試驗是否為獨立重復(fù)試驗. 2.分拆:判斷所求事件是否需要分拆. 3.計算:就每個事件依據(jù)n次獨立重復(fù)試驗的概率公式求解,最后利用互斥事件概率加法公式計算. [跟蹤訓(xùn)練] 1.某氣象站天氣預(yù)報的準確率為80%,計算(結(jié)果保留到小數(shù)點后面第2位): (1)5次預(yù)報中恰有2次準確的概率; (2)5次預(yù)報中至少有2次準確的概率. [解] (1)記“預(yù)報一次準確”為事件A,則P(A)=0.8. 5次預(yù)報相當于5次獨立重復(fù)試驗,恰有2次準確的概率為 C0.820.23=0.051 2≈0.05. 因此5次預(yù)報中恰有2次準確的概率為0.05. (2)“5次預(yù)報中至少有2次準確”的對立事件為“5次預(yù)報全部不準確或只有1次準確”,其概率為C(0.2)5+C0.80.24=0.006 72≈0.01. 故所求概率為1-0.01=0.99. 二項分布 某公司招聘員工,先由兩位專家面試,若兩位專家都同意通過,則視作通過初審予以錄用;若這兩位專家都未同意通過,則視作未通過初審不予錄用;當這兩位專家意見不一致時,再由第三位專家進行復(fù)審,若能通過復(fù)審則予以錄用,否則不予錄用.設(shè)應(yīng)聘人員獲得每位初審專家通過的概率均為,復(fù)審能通過的概率為,各專家評審的結(jié)果相互獨立. (1)求某應(yīng)聘人員被錄用的概率. (2)若4人應(yīng)聘,設(shè)X為被錄用的人數(shù),試求隨機變量X的分布列. 【導(dǎo)學號:95032168】 [思路探究] 解答本題可根據(jù)二項分布的概率計算方法解答,同時注意互斥事件概率公式的應(yīng)用. [解] 設(shè)“兩位專家都同意通過”為事件A,“只有一位專家同意通過”為事件B,“通過復(fù)審”為事件C. (1)設(shè)“某應(yīng)聘人員被錄用”為事件D,則D=A∪BC, 因為P(A)==, P(B)=2=, P(C)=, 所以P(D)=P(A∪BC)=P(A)+P(B)P(C)=. (2)根據(jù)題意,X=0,1,2,3,4,且X~B, Ai表示“應(yīng)聘的4人中恰有i人被錄用”(i=0,1,2,3,4), 因為P(A0)=C=, P(A1)=C=, P(A2)=C=, P(A3)=C=, P(A4)=C=. 所以X的分布列為 X 0 1 2 3 4 P [規(guī)律方法] 1.本例屬于二項分布,當X服從二項分布時,應(yīng)弄清X~B(n,p)中的試驗次數(shù)n與成功概率p. 2.解決二項分布問題的兩個關(guān)注點 (1)對于公式P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n)必須在滿足“獨立重復(fù)試驗”時才能運用,否則不能應(yīng)用該公式. (2)判斷一個隨機變量是否服從二項分布,關(guān)鍵有兩點:一是對立性,即一次試驗中,事件發(fā)生與否兩者必有其一;二是重復(fù)性,即試驗是獨立重復(fù)地進行了n次. [跟蹤訓(xùn)練] 2.袋中有8個白球、2個黑球,從中隨機地連續(xù)抽取3次,每次取1個球.有放回抽樣時,求取到黑球的個數(shù)X的分布列. [解] 有放回抽樣時,取到的黑球數(shù)X可能的取值為0,1,2,3. 又每次取到黑球的概率均為,3次取球可以看成3次獨立重復(fù)試驗,則X~B. 所以P(X=0)=C=, P(X=1)=C=, P(X=2)=C=, P(X=3)=C=. 所以X的分布列為: X 0 1 2 3 P 獨立重復(fù)試驗與二項分布綜合應(yīng)用 [探究問題] 1.王明在做一道單選題時,從A、B、C、D四個選項中隨機選一個答案,他做對的結(jié)果數(shù)服從二項分布嗎?兩點分布與二項分布有何關(guān)系? [提示] 做一道題就是做一次試驗,做對的次數(shù)可以為0次、1次,它服從二項分布.兩點分布就是一種特殊的二項分布,即是n=1的二項分布. 2.王明做5道單選題,每道題都隨機選一個答案,那么他做對的道數(shù)服從二項分布嗎?為什么? [提示] 服從二項分布.因為每道題都是隨機選一個答案,結(jié)果只有兩個:對與錯,并且每道題做對的概率均相等,故做5道題可以看成“一道題”重復(fù)做了5次,做對的道數(shù)就是5次試驗中“做對”這一事件發(fā)生的次數(shù),故他做對的“道數(shù)”服從二項分布. 3.王明做5道單選題,其中2道會做,其余3道均隨機選一個答案,他做對的道數(shù)服從二項分布嗎?如何判斷一隨機變量是否服從二項分布? [提示] 不服從二項分布.因為會做的兩道題做對的概率與隨機選取一個答案做對的概率不同,不符合二項分布的特點,判斷一個隨機變量是否服從二項分布關(guān)鍵是看它是否是n次獨立重復(fù)試驗,隨機變量是否為在這n次獨立重復(fù)試驗中某事件發(fā)生的次數(shù),滿足這兩點的隨機變量才服從二項分布,否則就不服從二項分布. 甲乙兩隊參加奧運知識競賽,每隊3人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分.假設(shè)甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為,,,且各人回答正確與否相互之間沒有影響.用ξ表示甲隊的總得分. (1)求隨機變量ξ的分布列; (2)用A表示“甲、乙兩個隊總得分之和等于3”這一事件,用B表示“甲隊總得分大于乙隊總得分”這一事件,求P(AB). 【導(dǎo)學號:95032169】 [思路探究] (1)由于甲隊中每人答對的概率相同,且正確與否沒有影響,所以ξ服從二項分布,其中n=3,p=; (2)AB表示事件A、B同時發(fā)生,即甲、乙兩隊總得分之和為3且甲隊總得分大于乙隊總得分. [解] (1)由題意知,ξ的可能取值為0,1,2,3,且 p(ξ=0)=C=, P(ξ=1)=C=, P(ξ=2)=C=, P(ξ=3)=C=. 所以ξ的分布列為 ξ 0 1 2 3 P (2)用C表示“甲得2分乙得1分”這一事件,用D表示“甲得3分乙得0分”這一事件,所以AB=C∪D,且C,D互斥, 又P(C)=C=, P(D)=C=, 由互斥事件的概率公式得 P(AB)=P(C)+P(D)=+==. [規(guī)律方法] 對于概率問題的綜合題,首先,要準確地確定事件的性質(zhì),把問題化歸為古典概型、互斥事件、獨立事件、獨立重復(fù)試驗四類事件中的某一種;其次,要判斷事件是A+B還是AB,確定事件至少有一個發(fā)生,還是同時發(fā)生,分別運用相加或相乘事件公式,最后,選用相應(yīng)的求古典概型、互斥事件、條件概率、獨立事件、n次獨立重復(fù)試驗的概率公式求解. [跟蹤訓(xùn)練] 3.甲、乙兩人各射擊一次,擊中目標的概率分別是和.假設(shè)兩人射擊是否擊中目標相互之間沒有影響;每人各次射擊是否擊中目標相互之間也沒有影響. (1)求甲射擊4次,至少有1次未擊中目標的概率; (2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率. [解] (1)記“甲連續(xù)射擊4次至少有1次未擊中目標”為事件A1,由題意,射擊4次,相當于做4次獨立重復(fù)試驗. 故P(A1)=1-P()=1-=, 所以甲射擊4次,至少有一次未擊中目標的概率為. (2)記“甲射擊4次,恰有2次擊中目標”為事件A2,“乙射擊4次,恰有3次擊中目標”為事件B2,則 P(A2)=C=; P(B2)=C=. 由于甲、乙射擊相互獨立,故 P(A2B2)=P(A2)P(B2)==. 所以兩人各射擊4次,甲恰有2次擊中目標且乙恰有3次擊中目標的概率為. [當 堂 達 標固 雙 基] 1.若X~B(10,0.8),則P(X=8)等于( ) A.C0.880.22 B.C0.820.28 C.0.880.22 D.0.820.28 A [X服從二項分布,所以P(X=8)=C0.880.22.] 2.一次測量中出現(xiàn)正誤差和負誤差的概率都是,在5次測量中恰好2次出現(xiàn)正誤差的概率是( ) 【導(dǎo)學號:95032170】 A. B. C. D. A [P(ξ=2)=C=10=.故選A.] 3.某電子管正品率為,次品率為,現(xiàn)對該批電子管進行測試,設(shè)第ξ次首次測到正品,則P(ξ=3)=( ) A.C B.C C. D. C [ξ=3表示第3次首次測到正品,而前兩次都沒有測到正品,故其概率是.] 4.某市公租房的房源位于A,B,C三個片區(qū),設(shè)每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的.該市的4位申請人中恰有2人申請A片區(qū)房源的概率為________. [每位申請人申請房源為一次試驗,這是4次獨立重復(fù)試驗, 設(shè)申請A片區(qū)房源記為A,則P(A)=, 所以恰有2人申請A片區(qū)的概率為C=.] 5.從學校乘汽車到火車站的途中有三個交通燈,假設(shè)在各個交通燈遇到紅燈的事件是相互獨立的,并且概率都是,設(shè)ξ為途中遇到紅燈的次數(shù),求隨機變量ξ的分布列. [解] 由題意知ξ~B, 則P(ξ=0)=C=, P(ξ=1)=C=, P(ξ=2)=C=, P(ξ=3)=C=. 所以隨機變量ξ的分布列為 ξ 0 1 2 3 P- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018年秋高中數(shù)學 第二章 隨機變量及其分布 2.2 二項分布及其應(yīng)用 2.2.3 獨立重復(fù)試驗與二項分布學案 新人教A版選修2-3 2018 高中數(shù)學 第二 隨機變量 及其 分布 二項分布 應(yīng)用 獨立
鏈接地址:http://www.szxfmmzy.com/p-6270407.html