2019屆高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第13節(jié) 導(dǎo)數(shù)的綜合應(yīng)用 第二課時(shí)練習(xí) 新人教A版.doc
《2019屆高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第13節(jié) 導(dǎo)數(shù)的綜合應(yīng)用 第二課時(shí)練習(xí) 新人教A版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019屆高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第13節(jié) 導(dǎo)數(shù)的綜合應(yīng)用 第二課時(shí)練習(xí) 新人教A版.doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第二章 第13節(jié) 導(dǎo)數(shù)的綜合應(yīng)用 第二課時(shí) 1.(導(dǎo)學(xué)號(hào)14577231)(文科)(2018貴陽(yáng)市一模)設(shè)f(x)=xex,g(x)=x2+x. (1)令F(x)=f(x)+g(x),求F(x)的最小值; (2)若任意x1,x2∈[-1,+∞)且x1>x2有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,求實(shí)數(shù)m的取值范圍. 解:(1)F(x)=f(x)+g(x)=xex+x2+x, F′(x)=(x+1)(ex+1), 令F′(x)>0,解得x>-1;令F′(x)<0,解得x<-1, 故F(x)在(-∞,-1)遞減,在(-1,+∞)遞增, 故F(x)min=F(-1)=--. (2)若任意x1,x2∈[-1,+∞)且x1>x2有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立, 則任意x1,x2∈[-1,+∞)且x1>x2有mf(x1)-g(x1)>mf(x2)-g(x2)>0恒成立. 令h(x)=mf(x)-g(x)=mxex-x2-x,x∈[-1,+∞), 即只需h(x)在[-1,+∞)遞增即可, 故h′(x)=(x+1)(mex-1)≥0在[-1,+∞)恒成立, 故m≥,而≤e, 故m≥e. 1.(導(dǎo)學(xué)號(hào)14577232)(理科)(2018貴陽(yáng)市一模)設(shè)f(x)=ln x,g(x)=x|x|. (1)求g(x)在x=-1處的切線方程; (2)令F(x)=xf(x)-g(x),求F(x)的單調(diào)區(qū)間; (3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求實(shí)數(shù)m的取值范圍. 解:(1)x<0時(shí),g(x)=-x2,g′(x)=-x, 故g(-1)=-,g′(-1)=1, 故切線方程是y+=(x+1),即x-y+=0. (2)F(x)=xln x-x|x|=xln x-x2,(x>0), F′(x)=ln x-x+1,F(xiàn)″(x)=-1. 令F″(x)>0,解得0<x<1;令F″(x)<0,解得x>1, 故F′(x)在(0,1)遞增,在(1,+∞)遞減, 故F′(x)≤F′(1)=0, 故F(x)在(0,+∞)遞減. (3)已知可轉(zhuǎn)化為x1>x2≥1時(shí),mg(x1)-x1f(x1)≥mg(x2)-x2f(x2)恒成立. 令h(x)=mg(x)-xf(x)=x2-xln x,則h(x)為單調(diào)遞增的函數(shù), 故h′(x)=mx-ln x-1≥0恒成立,即m≥恒成立. 令m(x)=,則m′(x)=-, ∴當(dāng)x∈[1,+∞)時(shí),m′(x)≤0,m(x)單調(diào)遞減, m(x)≤m(1)=1,故m≥1. 2.(導(dǎo)學(xué)號(hào)14577233)(理科)(2018桂林市、北海市、崇左市一模)已知函數(shù)f(x)=ax+xln x(a∈R) (1)若函數(shù)f(x)在區(qū)間[e,+∞)上為增函數(shù),求a的取值范圍; (2)當(dāng)a=1且k∈Z時(shí),不等式k(x-1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值. 解:(1)∵f(x)=ax+xln x, ∴f′(x)=a+1+ln x,又函數(shù)f(x)在區(qū)間[e,+∞)上為增函數(shù), ∴當(dāng)x≥e時(shí),a+1+ln x≥0恒成立, ∴a≥(-1-ln x)max=-1-ln e=-2,即a的取值范圍為[-2,+∞); (2)當(dāng)x>1時(shí),x-1>0,故不等式k(x-1)<f(x)?k<, 即k<對(duì)任意x>1恒成立. 令g(x)=,則g′(x)=, 令h(x)=x-ln x-2(x>1), 則h′(x)=1-=>0?h(x)在(1,+∞)上單增. ∵h(yuǎn)(3)=1-ln 3<0,h(4)=2-ln 4>0, ∴存在x0∈(3,4)使h(x0)=0, 即當(dāng)1<x<x0時(shí),h(x)<0,即g′(x)<0, 當(dāng)x>x0時(shí),h(x)>0,即g′(x)>0,∴g(x)在(1,x0)上單減,在(x0,+∞)上單增. 令h(x0)=x0-ln x0-2=0,即ln x0=x0-2,g(x)min=g(x0)===x0∈(3,4), ∴k<g(x)min=x0且k∈Z, 即kmax=3. 2.(導(dǎo)學(xué)號(hào)14577234)(文科)(2018濰坊市一模)設(shè)f(x)=ax2-a+,g(x)=+ln x. (1)設(shè)h(x)=f(x)-g(x)+,討論y=h(x)的單調(diào)性; (2)證明:對(duì)任意a∈,?x∈(1,+∞),使f(x)<g(x)成立. 解析:(1)h(x)=f(x)-g(x)+=ax2-ln x-a, 則h′(x)=2ax-=. ① a≤0時(shí),h(x)在(0,+∞)遞減; ②a>0時(shí),令h′(x)>0,解得x>, 令h′(x)<0,解得0<x<, 故h(x)在遞減,在遞增. (2)證明:由題意得:ax2-a+<+ln x, ?x∈(1,+∞),ax2-a-ln x<-. 設(shè)k(x)=, 若記k1(x)=ex-ex,則k1′(x)=ex-e, 當(dāng)x>1時(shí),(x)>0,k1(x)在(1,+∞)遞增,k1(x)>k1(1)=0, 若a≤0,由于x>1,故f(x)<g(x)恒成立. 若0<a<,設(shè)h(x)=a(x2-1)-ln x, 由(1)x∈時(shí),h(x)遞減,x∈時(shí),h(x)遞增, 故h<h(1)=0,而k>0, 即存在x=>1,使得f(x)<g(x), 故對(duì)任意a∈(-∞,0),?x∈(1,+∞),使得f(x)<g(x)成立. 3.(導(dǎo)學(xué)號(hào)14577235)(理科)(2018湖南十三校第二次聯(lián)考)設(shè)函數(shù)f(x)=-ax. (1)若函數(shù)f(x)在(1,+∞)上為減函數(shù),求實(shí)數(shù)a的最小值; (2)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的取值范圍. 解:(1) 由已知得x>0,x≠1. 因f (x)在(1,+∞)上為減函數(shù),故f′(x)=-a≤0在(1,+∞)上恒成立. 所以當(dāng)x∈(1,+∞)時(shí),f′(x)max≤0. 又f′(x)=-a=-2+-a =-2+-a, 故當(dāng)=,即x=e2時(shí),f′(x)max=-a. 所以-a≤0,于是a≥,故a的最小值為. (2)命題“若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立”等價(jià)于 “當(dāng)x∈[e,e2]時(shí),有f(x)min≤f′(x)max+a”. 由(1),當(dāng)x∈[e,e2]時(shí),f′(x)max=-a,∴f′(x)max+a=. 問(wèn)題等價(jià)于:“當(dāng)x∈[e,e2]時(shí),有f(x)min≤”. ①當(dāng)a≥時(shí),由(1),f(x)在[e,e2]上為減函數(shù), 則f(x)min=f(e2)=-ae2≤,故a≥-. ②當(dāng)a<時(shí),由于f′(x)=-2+-a在[e,e2]上的值域?yàn)? (ⅰ)-a≥0,即a≤0,f′(x)≥0在[e,e2]恒成立,故f(x)在[e,e2]上為增函數(shù), 于是,f(x)min=f(e)=e-ae≥e>,矛盾. (ⅱ)-a<0,即00,f(x)為增函數(shù), 所以,fmin(x)=f(x0)=-ax0≤,x0∈(e,e2)所以,a≥->->-=,與0- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019屆高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第13節(jié) 導(dǎo)數(shù)的綜合應(yīng)用 第二課時(shí)練習(xí) 新人教A版 2019 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第二 函數(shù) 導(dǎo)數(shù) 及其 應(yīng)用 13 綜合 課時(shí) 練習(xí) 新人
鏈接地址:http://www.szxfmmzy.com/p-6292780.html