《高中高中數(shù)學(xué):1_1《平行線等分線段定理》教案(新人教a版選修4-1)》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中高中數(shù)學(xué):1_1《平行線等分線段定理》教案(新人教a版選修4-1)(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
平行線等分線段定理
教學(xué)設(shè)計(jì)示例
一、教學(xué)目標(biāo)
1. 使學(xué)生掌握平行線等分線段定理及推論.
2. 能夠利用平行線等分線段定理任意等分一條已知線段,進(jìn)一步培養(yǎng)學(xué)生的作圖能力.
3. 通過定理的變式圖形,進(jìn)一步提高學(xué)生分析問題和解決問題的能力.
4. 通過本節(jié)學(xué)習(xí),體會(huì)圖形語(yǔ)言和符號(hào)語(yǔ)言的和諧美
二、教法設(shè)計(jì)
學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析
三、重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):平行線等分線段定理
2.教學(xué)難點(diǎn):平行線等分線段定理
四、課時(shí)安排
l課時(shí)
五、教具學(xué)具
計(jì)算機(jī)、投影儀、膠片、常用畫圖工具
2、六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)
七、教學(xué)步驟
【復(fù)習(xí)提問】
1.什么叫平行線?平行線有什么性質(zhì).
2.什么叫平行四邊形?平行四邊形有什么性質(zhì)?
【引入新課】
由學(xué)生動(dòng)手做一實(shí)驗(yàn):每個(gè)同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時(shí)在橫格紙上再任畫一條與橫線相交的直線 ,測(cè)量它被相鄰橫線截得的線段是否也相等?
(引導(dǎo)學(xué)生把做實(shí)驗(yàn)的條
3、件和得到的結(jié)論寫成一個(gè)命題,教師總結(jié),由此得到平行線等分線段定理)
平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等.
注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點(diǎn)必須使學(xué)生明確.
下面我們以三條平行線為例來(lái)證明這個(gè)定理(由學(xué)生口述已知,求證).
已知:如圖,直線 , .
求證: .
分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論.
?。ㄒ龑?dǎo)學(xué)生找
4、出另一種證法)
分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識(shí)即可證得 .
證明:過 點(diǎn)作 分別交 、 于點(diǎn) 、 ,得 和 ,如圖.
∴
∵ ,
∴
又∵ , ,
∴
∴
為使學(xué)生對(duì)定理加深理解和掌握,把知識(shí)學(xué)活,可讓學(xué)生認(rèn)識(shí)幾種定理的變式圖形,如圖(用計(jì)算機(jī)動(dòng)態(tài)演示).
? ?
引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1.
推論1:經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰.
再引導(dǎo)學(xué)生觀察下圖,在 中,
5、, ,則可得到 ,由此得出推論2.
推論2:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊.
注意:推論1和推論2也都是很重要的定理,在今后的論證和計(jì)算中經(jīng)常用到,因此,要求學(xué)生必須掌握好.
接下來(lái)講如何利用平行線等分線段定理來(lái)任意等分一條線段.
例? 已知:如圖,線段 .
求作:線段 的五等分點(diǎn).
作法:①作射線 .
?、谠谏渚€ 上以任意長(zhǎng)順次截取 .
③連結(jié) .
?、苓^點(diǎn) . 、 、 分別作 的平行線 、 、 、 ,分別交 于點(diǎn) 、 、 、 .
? 、 、 、 就是所求的五等分點(diǎn).
?。ㄕf(shuō)明略,由學(xué)生口述即可)
【總結(jié)、擴(kuò)展】
小結(jié):
?。╨)平行線等分線段定理及推論.
?。?)定理的證明只取三條平行線,是在較簡(jiǎn)單的情況下證明的,對(duì)于多于三條的平行線的情況,也可用同樣方法證明.
?。?)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組.
?。?)應(yīng)用定理任意等分一條線段.
八、布置作業(yè)
w.w.w.k.s.5.u.c.o.m