《吉林省松原市扶余縣第一中學高考數學一輪復習 第二章第七節(jié) 函數的圖象課件 理》由會員分享,可在線閱讀,更多相關《吉林省松原市扶余縣第一中學高考數學一輪復習 第二章第七節(jié) 函數的圖象課件 理(32頁珍藏版)》請在裝配圖網上搜索。
1、第七節(jié)函數的圖象第七節(jié)函數的圖象1描點法作圖描點法作圖通過列表、通過列表、_、連線三個步驟畫出函數的圖象、連線三個步驟畫出函數的圖象2函數圖象的三種變換函數圖象的三種變換(1)平移變換平移變換yf(x)的圖象向左平移的圖象向左平移a(a0)個單位得到函數個單位得到函數_的的圖象圖象yf(xb)(b0)的圖象可由的圖象可由yf(x)的圖象向的圖象向_平移平移b個單個單位得到位得到描點描點yf(xa)右右(2)對稱變換對稱變換(在在f(x)有意義的前提下有意義的前提下)yf(x)與與yf(x)的圖象關于的圖象關于_對稱;對稱;yf(x)與與yf(x)的圖象關于的圖象關于_對稱;對稱;yf(x)與與
2、yf(x)的圖象關于的圖象關于_對稱;對稱; y軸軸x軸軸原點原點橫坐標橫坐標 縱坐標縱坐標 yAf(x)(A0)的圖象,可將的圖象,可將yf(x)圖象上所有點的圖象上所有點的_變變?yōu)樵瓉淼臑樵瓉淼腁倍,倍,_不變而得到不變而得到縱坐標縱坐標橫坐標橫坐標1函數函數y|f(x)|與與yf(|x|)的圖象有何不同?的圖象有何不同?【提示【提示】y|f(x)|的圖象是將的圖象是將yf(x)的圖象在的圖象在x軸下方的部分軸下方的部分以以x軸為對稱軸翻折到軸為對稱軸翻折到x軸上方,其余部分不變而得到的而軸上方,其余部分不變而得到的而yf(|x|)的圖象是將的圖象是將yf(x),x0的部分作出,再利用偶函
3、數的的部分作出,再利用偶函數的圖象關于圖象關于y軸的對稱性,作出軸的對稱性,作出x0的圖象而得到的的圖象而得到的2(1)函數函數yf(x)的圖象關于原點對稱與函數的圖象關于原點對稱與函數yf(x)與與yf(x)的圖象關于原點對稱一致嗎?的圖象關于原點對稱一致嗎?(2)若函數若函數yf(x)的圖象關于點的圖象關于點(a,0)(a0)對稱,那么其圖象如對稱,那么其圖象如何變換才能使它變?yōu)槠婧瘮??其解析式變?yōu)槭裁??何變換才能使它變?yōu)槠婧瘮??其解析式變?yōu)槭裁矗俊咎崾尽咎崾尽?1)不一致,前者是函數自身的對稱,后面是兩個不一致,前者是函數自身的對稱,后面是兩個函數圖象間的對稱函數圖象間的對稱(2)將將y
4、f(x)的圖象向左平移的圖象向左平移a個單位,得個單位,得yf(xa)為奇函數為奇函數 【解析【解析】f(x)f(x),函數函數f(x)為奇函數為奇函數【答案【答案】C2函數函數f(x)ln|x1|的圖象大致是的圖象大致是()【解析【解析】f(x)的定義域是的定義域是xR,且,且x1,當當x1時,時,f(x)是增函數;當是增函數;當x1時,時,f(x)是減函數是減函數【答案【答案】B3(2011陜西高考陜西高考)方程方程|x|cos x在在R內內()A無實根無實根 B有且僅有一個根有且僅有一個根C有且僅有兩個根有且僅有兩個根 D有無窮多個根有無窮多個根【答案【答案】C4函數函數yf(x)為偶函
5、數,則函數為偶函數,則函數yf(x1)的一條對稱軸是的一條對稱軸是_【答案【答案】x1 作函數的圖象作函數的圖象 1“作圖作圖”的基本途徑是:求出函數的定義域的基本途徑是:求出函數的定義域(旨在控旨在控制圖象左、右的范圍制圖象左、右的范圍)盡量求出值域盡量求出值域(旨在控制圖象上、下的旨在控制圖象上、下的范圍范圍)變換變換(化簡、平移、對稱、伸縮等化簡、平移、對稱、伸縮等)出圖象的形狀出圖象的形狀描點描點作圖作圖2注意平移變換與伸縮變換的順序對變換單位及解析式注意平移變換與伸縮變換的順序對變換單位及解析式的影響用的影響用xm替換替換x,圖象發(fā)生左右平移,用,圖象發(fā)生左右平移,用kx替換替換x,
6、圖,圖象發(fā)生伸縮變化,用象發(fā)生伸縮變化,用x、y替換替換x、y,圖象分別關于,圖象分別關于y軸、軸、x軸對稱軸對稱將函數將函數ylg(x1)的圖象沿的圖象沿x軸對折,再向右平軸對折,再向右平移一個單位,求所得圖象的函數解析式移一個單位,求所得圖象的函數解析式函數圖象的識別與運用函數圖象的識別與運用 (2)(2012梅州質檢梅州質檢)直線直線y1與曲線與曲線yx2|x|a有四個交有四個交點,則實數點,則實數a的取值范圍是的取值范圍是_1(1)第第(1)小題易錯選小題易錯選B,原因在于忽視函數極值點的個,原因在于忽視函數極值點的個數;數;(2)在觀察、分析圖象時,要注意圖象的分布及變化趨勢,在觀察
7、、分析圖象時,要注意圖象的分布及變化趨勢,結合函數的奇偶性、極值點、特殊點的函數值等,找準解析式結合函數的奇偶性、極值點、特殊點的函數值等,找準解析式與圖象的對應關系與圖象的對應關系2函數圖象形象地顯示了函數的性質函數圖象形象地顯示了函數的性質(如單調性、奇偶如單調性、奇偶性、最值等性、最值等),為研究數量關系問題提供了,為研究數量關系問題提供了“形形”的直觀的直觀性因此方程解的個數常轉化為兩函數圖象的交點個數問題,性因此方程解的個數常轉化為兩函數圖象的交點個數問題,不等式問題常轉化為函數圖象的上、下關系來解不等式問題常轉化為函數圖象的上、下關系來解 (1)已知函數已知函數f(x)lg|x|,
8、g(x)x21,則函數,則函數f(x)g(x)的圖象只可能是的圖象只可能是()【解析【解析】(1)f(x)g(x)在定義域內是在定義域內是偶函數,當偶函數,當x無限增大時,無限增大時,f(x)g(x),因此,因此,A、B、C不滿足,只有不滿足,只有D符合符合【答案【答案】(1)D(2)D (2012佛山質檢佛山質檢)(1)已知已知yf(2x1)是偶函數,則函數是偶函數,則函數yf(2x)的圖象關于直線的圖象關于直線_對稱對稱(2)設函數設函數yf(x)的定義域為實數集的定義域為實數集R,則函數,則函數yf(x1)與與yf(1x)的圖象關于的圖象關于()A直線直線y0對稱對稱 B直線直線x0對稱
9、對稱C直線直線y1對稱對稱 D直線直線x1對稱對稱【思路點撥【思路點撥】(1)利用平移變換考查對稱性;利用平移變換考查對稱性;(2)利用平移變利用平移變換由換由yf(x)與與yf(x)的對稱性,研究的對稱性,研究yf(x1)與與yf(1x)的對稱性的對稱性函數圖象的對稱性函數圖象的對稱性 1本題易把兩個函數的對稱性與同一個函數的對稱性混本題易把兩個函數的對稱性與同一個函數的對稱性混淆,在第淆,在第(2)題中誤選題中誤選B,導致錯誤,導致錯誤2(1)若若f(mx)f(mx)恒成立,則恒成立,則yf(x)的圖象關于的圖象關于xm對稱對稱(2)設函數設函數yf(x)定義在實數集上,則函數定義在實數集
10、上,則函數yf(xm)與與yf(mx)(m0)的圖象關于的圖象關于xm對稱對稱【答案【答案】C 從近兩年看,高考命題主要涉及圖象的識辨與應用,函從近兩年看,高考命題主要涉及圖象的識辨與應用,函數圖象的對稱性,數圖象的對稱性,2011年全國有年全國有4省市考查函數圖象的應用,省市考查函數圖象的應用,題型以選擇題為主,中等難度,考查識圖、作圖能力及數形結題型以選擇題為主,中等難度,考查識圖、作圖能力及數形結合的數學思想合的數學思想函數圖象涉及面廣,形式靈活,常以新面孔出現,函數圖象涉及面廣,形式靈活,常以新面孔出現,2013年高考復習應予以高度關注,解題時應注意作圖規(guī)范,莫要忽年高考復習應予以高度
11、關注,解題時應注意作圖規(guī)范,莫要忽視自變量的取值范圍視自變量的取值范圍易錯辨析之四作圖不規(guī)范導致用圖解題錯誤易錯辨析之四作圖不規(guī)范導致用圖解題錯誤【答案【答案】B【答案【答案】D1(2011陜西高考陜西高考)設函數設函數f(x)(xR)滿足滿足f(x)f(x),f(x2)f(x),則,則yf(x)的圖象可能是的圖象可能是()【解析【解析】易知易知f(x)為偶函數,圖象關于為偶函數,圖象關于y軸對稱,軸對稱,由由f(x2)f(x),T2是函數是函數yf(x)的一個周期,的一個周期,A、C、D均錯,均錯,B滿足條件滿足條件【答案【答案】B2(2012陽江模擬陽江模擬)關于關于x的方程的方程exln x1的實根個數是的實根個數是_【解析【解析】由原方程可得由原方程可得ln xex.設設y1ln x,y2ex,兩圖象如圖所示,兩曲線有且只有一個交點,兩圖象如圖所示,兩曲線有且只有一個交點,所以方程有唯一解所以方程有唯一解【答案【答案】1