《安徽省中考數(shù)學(xué)復(fù)習(xí) 第8單元 視圖、投影與變換 第32課時 軸對稱與中心對稱課件》由會員分享,可在線閱讀,更多相關(guān)《安徽省中考數(shù)學(xué)復(fù)習(xí) 第8單元 視圖、投影與變換 第32課時 軸對稱與中心對稱課件(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第八單元 視圖、投影與變換第32課時 軸對稱與中心對稱考綱考點(diǎn)考綱考點(diǎn)(1)軸對稱的概念(2)軸對稱的基本性質(zhì)(3)畫簡單平面圖形關(guān)于給定對稱軸的對稱圖形(4)等腰三角形、矩形、菱形、正多邊形、圓的軸對稱性及其相關(guān)性質(zhì)(5)軸對稱圖形概念及生活中的軸對稱圖形(6)中心對稱、中心對稱圖形(7)中心對稱的基本性質(zhì)(8)線段、平行四邊形、正多邊形、圓的中心對稱性本課時知識點(diǎn)在近幾年安徽中考中從未單獨(dú)命題,一般都是與平移、旋轉(zhuǎn)綜合考查,如2013年第17題涉及軸對稱和中心對稱,2015年第17題、2016年第17題涉及軸對稱,預(yù)測2016年安徽中考仍不會單獨(dú)命題考查本課時知識點(diǎn).知識體系圖知識體系圖軸
2、對稱與中心對稱軸對稱中心對稱軸對稱的概念軸對稱的性質(zhì)軸對稱圖形中心對稱中心對稱圖形8.2.1 中心對稱與中心對稱圖形中心對稱與中心對稱圖形(1)中心對稱:把一個圖形繞著某一個點(diǎn)旋轉(zhuǎn)180,如果它能與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點(diǎn)成中心對稱,該點(diǎn)叫做對稱中心.(2)中心對稱圖形:把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180后能與自身重合,我們把這個圖形叫做中心對稱圖形,這個點(diǎn)叫做對稱中心.(3)中心對稱圖形的性質(zhì)關(guān)于中心對稱的兩個圖形是全等形.關(guān)于中心對稱的兩個圖形,對稱點(diǎn)的連線都經(jīng)過對稱中心并且被對稱中心平分.(4)中心對稱圖形的判別:如果兩個圖形的對應(yīng)點(diǎn)連成的線段都是經(jīng)過某一點(diǎn),并且被這一點(diǎn)
3、平分,那么這兩個圖形一定關(guān)于這一點(diǎn)成中心對稱.8.2.2 對稱軸與軸對稱圖形對稱軸與軸對稱圖形(1)軸對稱圖形:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做它的對稱軸.(2)兩個圖形成軸對稱:對于兩個圖形,如果沿一條直線對折后,它們能完全重合,那么稱這兩個圖形成軸對稱,這條直線叫做對稱軸.(3)軸對稱的性質(zhì)對應(yīng)點(diǎn)所連的線段被對稱軸垂直平分.對應(yīng)線段相等,對應(yīng)角相等.下列圖形中既是軸對稱圖形又是中心對稱圖形的是 ( )A、是軸對稱圖形,但不是中心對稱圖形,故A錯誤; B、是軸對稱圖形,也是中心對稱圖形,故B正確; C、是中心對稱圖形,但不是軸
4、對稱圖形,故C錯誤; D、是軸對稱圖形,但不是中心對稱圖形,故D錯誤如圖,在邊長為1個單位長度的小正方形組成的1212網(wǎng)格中,給出了四邊形ABCD的兩條邊AB與BC,且四邊形ABCD是一個軸對稱圖形,其對稱軸為直線AC.(1)試在圖中標(biāo)出點(diǎn)D,并畫出該四邊形的另兩條邊;(2)將四邊形ABCD向下平移5個單位,畫出平移后得到的四邊形ABCD.(1)點(diǎn)D及四邊形ABCD另兩條邊如右圖所示.(2)得到的四邊形ABCD如右圖所示.如圖,RtABC中,ACB=90,將RtABC向下翻折,使點(diǎn)A與點(diǎn)C重合,折痕為DE.求證:DEBC.方法一:ADE與CDE關(guān)于直線DE對稱,點(diǎn)A與點(diǎn)C是對稱點(diǎn),DEAC,AED=90(或CED=90).又ACB=90,AED=ACB(或CED+ACB=180),DEBC.方法二:翻折后,AED與CED重合,AED=CED.AED+CED=180,AED=CED=12180=90.又ACB=90,AED=ACB(或CED+ACB=180),DEBC.