九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

廣東省中考數學 第10章 填空題 第37節(jié) 填空題 專練二(空間與圖形)復習課件

上傳人:沈*** 文檔編號:73906917 上傳時間:2022-04-12 格式:PPT 頁數:33 大?。?.79MB
收藏 版權申訴 舉報 下載
廣東省中考數學 第10章 填空題 第37節(jié) 填空題 專練二(空間與圖形)復習課件_第1頁
第1頁 / 共33頁
廣東省中考數學 第10章 填空題 第37節(jié) 填空題 專練二(空間與圖形)復習課件_第2頁
第2頁 / 共33頁
廣東省中考數學 第10章 填空題 第37節(jié) 填空題 專練二(空間與圖形)復習課件_第3頁
第3頁 / 共33頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《廣東省中考數學 第10章 填空題 第37節(jié) 填空題 專練二(空間與圖形)復習課件》由會員分享,可在線閱讀,更多相關《廣東省中考數學 第10章 填空題 第37節(jié) 填空題 專練二(空間與圖形)復習課件(33頁珍藏版)》請在裝配圖網上搜索。

1、第第37節(jié)節(jié) 選擇題選擇題專練二專練二(空間與圖形)(空間與圖形)第十章第十章 填空題填空題1.如圖,已知1=2,則圖中互相平行的線段是【分析】【分析】直接根據平行線的判定定理進行解答即可直接根據平行線的判定定理進行解答即可【解答】【解答】解:解:1=2(已知),(已知),ABCD(內錯角相等,兩直線平行)(內錯角相等,兩直線平行)故答案為:故答案為:ABCDABCD2如圖,已知ab,小亮把三角板的直角頂點放在直線b上若1=40,則2的度數為【分析】【分析】由直角三角板的性質可知由直角三角板的性質可知3=180-1-90,再根據平行線的性質即可得出結論再根據平行線的性質即可得出結論【解答】【解

2、答】 解:解:1=40,3=180-1-90=180-40-90=50,ab,2=3=50故答案為:故答案為:50503.如果三角形的兩條邊長分別為23cm和10cm,第三邊與其中一邊的長相等,那么第三邊的長為cm【分析】【分析】根據在三角形中任意兩邊之和第三邊,任意兩邊之差根據在三角形中任意兩邊之和第三邊,任意兩邊之差第三邊即可求解第三邊即可求解【解答】【解答】解:設第三邊的長為解:設第三邊的長為x,滿足:,滿足:23cm-10cmx23cm+10cm即即13cmx33cm因而第三邊一定是因而第三邊一定是23cm234.如圖,在ABC中,A=60,B=40,點D、E分別在BC、AC的延長線上

3、,則1=【分析】【分析】先根據三角形內角和定理求出先根據三角形內角和定理求出ACB的度數,再根據對頂的度數,再根據對頂角相等求出角相等求出1的度數即可的度數即可【解答】【解答】解:解:ABC中,中,A=60,B=40,ACB=180-A-B=180-60-40=80,1=ACB=80故答案為:故答案為:80805.如圖,在RtABC中,ACB=90,D、E、F分別是AB、BC、CA的中點,若CD=5cm,則EF=cm【分析】【分析】已知已知CD是是RtABC斜邊斜邊AB的中線,那么的中線,那么AB=2CD;EF是是ABC的中位線,則的中位線,則EF應等于應等于AB的一的一半半【解答】【解答】

4、解:解:ABC是直角三角形,是直角三角形,CD是斜邊的中線,是斜邊的中線,CD= AB,又又EF是是ABC的中位線,的中位線,AB=2CD=25=10cm,EF= 10=5cm故答案為:故答案為:556.如圖,已知AC=BD,要使ABC DCB,則只需添加一個適當的條件是(填一個即可)【分析】【分析】由由AC=BD,BC是公共邊,即可得要證是公共邊,即可得要證ABC DCB,可利用,可利用SSS或或SAS證得證得【解答】【解答】解:解:AC=BD,BC是公共邊,是公共邊,要使要使ABC DCB,需添加:,需添加:AB=DC(SSS),),ACB=DBC(SAS)故答案為:此題答案不唯一:如故答

5、案為:此題答案不唯一:如AB=DC或或ACB=DBCACB=DBC7.在RtABC中,ACB=90,BC=2cm,CDAB,在AC上取一點E,使EC=BC,過點E作EFAC交CD的延長線于點F,若EF=5cm,則AE=cm【分析】【分析】根據直角三角形的兩銳角互余的性質求出根據直角三角形的兩銳角互余的性質求出ECF=B,然后利用,然后利用“角邊角角邊角”證明證明ABC和和FCE全等,根據全等三角形對應邊相等可得全等,根據全等三角形對應邊相等可得AC=EF,再根據,再根據AE=AC-CE,代入數據計算即可得解,代入數據計算即可得解3【解答】【解答】解:解:ACB=90,ECF+BCD=90,CD

6、AB,BCD+B=90,ECF=B(等角的余角相等),(等角的余角相等),在在FCE和和ABC中,中,ABC FEC(ASA),),AC=EF,AE=AC-CE,BC=2cm,EF=5cm,AE=5-2=3cm故答案為:故答案為:38.如圖,D、E分別是ABC的邊AB、AC上的點,連接DE,要使ADEACB,還需添加一個條件(只需寫一個)【分析】【分析】由由A是公共角,利用有兩角對應相等的三角形是公共角,利用有兩角對應相等的三角形相似,即可得可以添加相似,即可得可以添加ADE=C或或AED=B;又由;又由兩組對應邊的比相等且夾角對應相等的兩個三角形相似,兩組對應邊的比相等且夾角對應相等的兩個三

7、角形相似,即可得即可得D可以添加可以添加AD:AC=AE:AB或或ADAB=AEAC,繼而求得答案繼而求得答案ADE=C 【解答】【解答】解:解:A是公共角,是公共角,當當ADE=C或或AED=B時,時,ADEACB(有(有兩角對應相等的三角形相似),兩角對應相等的三角形相似),當當AD:AC=AE:AB或或ADAB=AEAC時,時,ADEACB(兩組對應邊的比相等且夾角對應相等(兩組對應邊的比相等且夾角對應相等的兩個三角形相似),的兩個三角形相似),要使要使ADEACB,還需添加一個條件:答案不唯,還需添加一個條件:答案不唯一,如一,如ADE=C或或AED=B或或AD:AC=AE:AB或或A

8、DAB=AEAC等等故答案為:此題答案不唯一,如故答案為:此題答案不唯一,如ADE=C或或AED=B或或AD:AC=AE:AB或或ADAB=AEAC等等9.如圖,在一場羽毛球比賽中,站在場內M處的運動員林丹把球從N點擊到了對方內的B點,已知網高OA=1.52米,OB=4米,OM=5米,則林丹起跳后擊球點N離地面的距離NM=米【分析】【分析】首先根據題意易得首先根據題意易得ABONAM,然后根據,然后根據相似三角形的對應邊成比例,即可求得答案相似三角形的對應邊成比例,即可求得答案3.42【解答】【解答】解:根據題意得:解:根據題意得:AOBM,NMBM,AONM,ABONBM,OA=1.52米,

9、米,OB=4米,米,OM=5米,米,BM=OB+OM=4+5=9(米),(米),解得:解得:NM=3.42(米),(米),林丹起跳后擊球點林丹起跳后擊球點N離地面的距離離地面的距離NM為為3.42米米故答案為:故答案為:3.4210.如圖,以點O為位似中心,將五邊形ABCDE放大后得到五邊形ABCDE,已知OA=10cm,OA=20cm,則五邊形ABCDE的周長與五邊形ABCDE的周長的比值是【分析】【分析】由五邊形由五邊形ABCDE與五邊形與五邊形ABCDE位似,可得五邊形位似,可得五邊形ABCDE五邊形五邊形ABCDE,又由,又由OA=10cm,OA=20cm,即可求得其相似比,根據,即可

10、求得其相似比,根據相似多邊形的周長的比等于其相似比,即可求得答案相似多邊形的周長的比等于其相似比,即可求得答案【解答】【解答】解:解:五邊形五邊形ABCDE與五邊形與五邊形ABCDE位似,位似,OA=10cm,OA=20cm,五邊形五邊形ABCDE五邊形五邊形ABCDE,且相似比為:,且相似比為:OA:OA=10:20=1:2,五邊形五邊形ABCDE的周長與五邊形的周長與五邊形ABCDE的周長的比為:的周長的比為:OA:OA=1:2故答案為:故答案為:1:21:211(2016淮安)已知一個等腰三角形的兩邊長分別為2和4,則該等腰三角形的周長是【分析】根據任意兩邊之和大于第三邊,知道等腰三角形

11、的腰的長根據任意兩邊之和大于第三邊,知道等腰三角形的腰的長度是度是4,底邊長,底邊長2,把三條邊的長度加起來就是它的周長,把三條邊的長度加起來就是它的周長【解答】解:因為解:因為2+ +24,所以等腰三角形的腰的長度是所以等腰三角形的腰的長度是4,底邊長,底邊長2,周長:周長:4+ +4+ +2=10,答:它的周長是,答:它的周長是10,故答案為:,故答案為:101012.邊長為6cm的等邊三角形中,其一邊上高的長度為cm【分析】【分析】根據等邊三角形三角都是根據等邊三角形三角都是60利用三角函數可求得其高利用三角函數可求得其高【解答】【解答】解:解:ABC是等邊三角形,是等邊三角形,B=60

12、,AB=6cm,AD= cm故答案為:故答案為: cm13.如圖所示,在RtABC中,CD是斜邊AB上的高,ACD=40,則EBC=度【分析】【分析】首先根據余角的性質求出首先根據余角的性質求出ABC的的度數,再根據鄰補角定義求出度數,再根據鄰補角定義求出EBC【解答】【解答】解:解:在在RtABC中,中,CD是斜邊是斜邊AB上的高,上的高,ABC=ACD=90-BCD=40,EBC=180-ABC=140故答案為:故答案為:14014014.在ABC中,C=90,sinA=,則cosB=【分析】【分析】解答此題要利用互余角的三角函數間的關系:解答此題要利用互余角的三角函數間的關系:sin(9

13、0-)=cos,cos(90-)=sin【解答】【解答】解:解:在在ABC中,中,C=90,A+B=90,cosB=sinA= 15計算:cos245+tan30sin60=【分析】【分析】將將cos45= ,tan30= ,sin60= 代入即可得代入即可得出答案出答案【解答】【解答】解:解:cos245+tan30sin60 故答案為:故答案為:1116.如圖,某公園入口處原有三級臺階,每級臺階高為18cm,深為30cm,為方便殘疾人士,擬將臺階改為斜坡,設臺階的起點為A,斜坡的起始點為C,現設計斜坡BC的坡度i=1:5,則AC的長度是cm【分析】【分析】首先過點首先過點B作作BDAC于于

14、D,根據題意即可求得,根據題意即可求得AD與與BD的的長,然后由斜坡長,然后由斜坡BC的坡度的坡度i=1:5,求得,求得CD的長,繼而求得答案的長,繼而求得答案210【解答】【解答】 解:過點解:過點B作作BDAC于于D,根據題意得:根據題意得:AD=230=60(cm),),BD=183=54(cm),),斜坡斜坡BC的坡度的坡度i=1:5,BD:CD=1:5,CD=5BD=554=270(cm),),AC=CD-AD=270-60=210(cm)AC的長度是的長度是210cm故答案為:故答案為:210平行四邊形的兩條對角線互相平分,平行四邊形的兩條對角線互相平分,AO=1/2AC=1/2A

15、O=1/2AC=1/26=3.6=3.故答案為:故答案為:3 3【分析】根據多邊形的內角和是(根據多邊形的內角和是(n2)180,代入計算即可代入計算即可【解答】解:(解:(52)180=540,故答案為:故答案為:54017.(2016泰州)五邊形的內角和是54018.如圖,在四邊形ABCD中,ABCD,ADBC,AC、BD相交于點O.若AC=6,則線段AO的長度等于.319.如圖,將矩形ABCD沿CE折疊,點B恰好落在邊AD的F處,如果,那么tanDCF的值是【分析】【分析】由矩形由矩形ABCD沿沿CE折疊,點折疊,點B恰好落在恰好落在邊邊AD的的F處,即可得處,即可得BC=CF,CD=A

16、B,由,由 ,可得可得 ,然后設,然后設CD=2x,CF=3x,利用勾股定,利用勾股定理即可求得理即可求得DF的值,繼而求得的值,繼而求得tanDCF的值的值【解答】【解答】解:解:四邊形四邊形ABCD是矩形,是矩形,AB=CD,D=90,將矩形將矩形ABCD沿沿CE折疊,點折疊,點B恰好落在邊恰好落在邊AD的的F處,處,CF=BC,設設CD=2x,CF=3x,故答案為:故答案為: 20.如圖,在菱形ABCD中,對角線AC=6,BD=8,則這個菱形的邊長為【分析】【分析】由在菱形由在菱形ABCD中,對角線中,對角線AC=6,BD=8,根據,根據菱形的對角線互相平分且互相垂直,即可得菱形的對角線

17、互相平分且互相垂直,即可得ACBD,OA= AC=3,OB= BD=4,然后在,然后在RtAOB中,利用中,利用勾股定理即可求得這個菱形的邊長勾股定理即可求得這個菱形的邊長【解答】【解答】 解:解:四邊形四邊形ABCD是菱形,是菱形,AC=6,BD=8,ACBD,OA= AC=3,OB= BD=4,在在RtAOB中,中,AB= =5即這個菱形的邊長為即這個菱形的邊長為5故答案為:故答案為:5521.如圖,在平面直角坐標系中有一邊長為1的正方形OABC,邊OA、OC分別在x軸、y軸上,如果以對角線OB為邊作第二個正方形OBB1C1,再以對角線OB1為邊作第三個正方形OB1B2C2,照此規(guī)律作下去

18、,則點B2012的坐標為【分析】【分析】首先求出首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐標,找出這些坐標的之間的規(guī)律,然的坐標,找出這些坐標的之間的規(guī)律,然后根據規(guī)律計算出點后根據規(guī)律計算出點B2012的坐標的坐標(-21006,-21006)【解答】【解答】解:解:正方形正方形OABC邊長為邊長為1,OB= ,正方形正方形OBB1C1是正方形是正方形OABC的對角線的對角線OB為邊,為邊,OB1=2,B1點坐標為(點坐標為(0,2),),同理可知同理可知OB2=2 ,B2點坐標為(點坐標為(-2,2),),同理可知同理可知OB3=4,B3點坐標為(點坐標為(-4,0)

19、,),B4點坐標為(點坐標為(-4,-4),),B5點坐標為(點坐標為(0,-8),),B6(8,-8),),B7(16,0)B8(16,16),),B9(0,32),),由規(guī)律可以發(fā)現,每經過由規(guī)律可以發(fā)現,每經過8次作圖后,點的坐標符號與第一次坐標次作圖后,點的坐標符號與第一次坐標符號相同,每次正方形的邊長變?yōu)樵瓉淼姆栂嗤?,每次正方形的邊長變?yōu)樵瓉淼?倍,倍,20128=2514,B2012的縱橫坐標符號與點的縱橫坐標符號與點B4的相同,縱橫坐標都是負值,的相同,縱橫坐標都是負值,B2012的坐標為(的坐標為(-21006,-21006)故答案為:(故答案為:(-21006,-21006

20、)22.如圖,AB是 O的直徑,弦CDAB,垂足為E,如果AB=26,CD=24,那么sinOCE=【分析】【分析】根據果根據果AB=26,判斷出半徑,判斷出半徑OC=13,再根據垂,再根據垂徑定理求出徑定理求出CE= CD=12,在,在RtOCE中,利用勾股定中,利用勾股定理求出理求出OE的長,再根據正弦函數的定義,求出的長,再根據正弦函數的定義,求出sinOCE的度數的度數【解答】【解答】解:如圖:解:如圖: AB為為 0直徑,直徑,AB=26,OC= 26=13,又又CDAB,CE= CD=12,在在RtOCE中,中,OE= =5,sinOCE= 故答案為:故答案為: 23.如圖,點A、

21、B、C在圓O上,A=60,則BOC=度【分析】【分析】欲求欲求BOC,已知了同弧所對的圓周角,已知了同弧所對的圓周角A的度的度數,可根據圓周角定理求出數,可根據圓周角定理求出BOC的度數的度數【解答】【解答】解:解:BAC和和BOC是同弧所對的圓周角和是同弧所對的圓周角和圓心角,圓心角,BOC=2BAC=260=120故答案為故答案為12012024.如圖,ABC為 O的內接三角形,AB為 O的直徑,點D在 O上,ADC=68,則BAC=【分析】【分析】由在同圓或等圓中,同弧或等弧由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得所對的圓周角相等,即可求得B的度數,的度數,又由直徑所對的圓

22、周角是直角,即可求得又由直徑所對的圓周角是直角,即可求得ACB=90,繼而求得答案,繼而求得答案【解答】【解答】解:解:ABC與與ADC是是 對的圓周角,對的圓周角,ABC=ADC=68,AB為為 O的直徑,的直徑,ACB=90,BAC=90-ABC=90- 68=22故答案為:故答案為:222225.如圖,點P是 O外一點,PA是 O的切線,切點為A, O的半徑OA=2cm,P=30,則PO=cm【分析】【分析】根據切線的性質判定根據切線的性質判定APO為直角三角形,然為直角三角形,然后在直角三角形中,利用后在直角三角形中,利用30度角所對的直角邊度角所對的直角邊OA等于斜等于斜邊邊PO的一

23、半即可求得的一半即可求得PO的值的值【解答】【解答】 解:解:如圖,如圖,PA是是 O的切線,的切線,PAOA,PAO=90;又又P=30(已知),(已知),PO=2OA(30角所對的直角邊是斜邊的一半);角所對的直角邊是斜邊的一半);OA=2cm(已知),(已知),PO=4cm;故答案是:故答案是:4426.如圖, O的半徑為6cm,直線AB是 O的切線,切點為點B,弦BCAO,若A=30,則劣弧的長為cm【分析】【分析】根據切線的性質可得出根據切線的性質可得出OBAB,繼而求出,繼而求出BOA的度數,利用弦的度數,利用弦BCAO,及,及OB=OC可得出可得出BOC的度數,代入弧長公式即可得

24、出答案的度數,代入弧長公式即可得出答案【解答】【解答】解:解:直線直線AB是是 O的切線,的切線,OBAB,又,又A=30,BOA=60,弦弦BCAO,OB=OC,OBC是等邊三角形,是等邊三角形,即可得即可得BOC=60,劣弧劣弧 的長的長= =2cm故答案為:故答案為:2227.如圖,在RtABC中,C=90, BAC=30,AB=2.將ABC繞頂點A順時針方向旋轉至ABC的位置,B、A、C三點共線,則線段BC掃過的區(qū)域面積為 .(結果保留)28.(2016樂至一模)如圖,有一圓心角為120,半徑長為6cm的扇形,若將OA、OB重合后圍成一圓錐側面,那么圓錐的高是cm【分析】本題已知扇形的

25、圓心角及半徑就是已知本題已知扇形的圓心角及半徑就是已知圓錐的底面周長,能求出底面半徑,而底面半徑、圓錐的底面周長,能求出底面半徑,而底面半徑、圓錐的高、母線長即扇形半徑構成直角三角形,所以可利圓錐的高、母線長即扇形半徑構成直角三角形,所以可利用勾股定理解決用勾股定理解決【解答】解:解:有一圓心角為有一圓心角為120,半徑長為,半徑長為6cm的扇形,的扇形,若將若將OA、OB重合后圍成一圓錐側面,重合后圍成一圓錐側面,扇形的弧長為扇形的弧長為 =4,即圓錐的底面圓周長為,即圓錐的底面圓周長為4,底面圓半徑為底面圓半徑為2,OA=6,圓錐的高是:圓錐的高是:故答案為故答案為4 429.如圖,小明在

26、A時測得某樹的影長為2m,B時又測得該樹的影長為8m,若兩次日照的光線互相垂直,則樹的高度為m【分析】【分析】根據題意,畫出示意圖,易得:根據題意,畫出示意圖,易得:RtEDCRtCDF,進,進而可得而可得 ;即;即DC2=EDFD,代入數據可得答案,代入數據可得答案【解答】【解答】 解:如圖:過點解:如圖:過點C作作CDEF,由題意得:由題意得:EFC是直角三角形,是直角三角形,ECF=90,EDC=CDF=90,E+ECD=ECD+DCF=90,E=DCF,RtEDCRtCDF,有有 ;即;即DC2=EDFD,代入數據可得代入數據可得DC2=16,DC=4;故答案為:故答案為:4430.如

27、圖,兩塊相同的三角板完全重合在一起,A=30,AC=10,把上面一塊繞直角頂點B逆時針旋轉到ABC的位置,點C在AC上,AC與AB相交于點D,則CD=【分析】【分析】根據等邊三角形的判定得出根據等邊三角形的判定得出BCC是是等邊三角形,再利用已知得出等邊三角形,再利用已知得出DC是是ABC的中位線,進而得出的中位線,進而得出DC= BC= 【解答】【解答】解:解:A=30,AC=10,ABC=90,C=60,BC=BC= AC=5,BCC是等邊三角形,是等邊三角形,CC=5,ACB=CBC=60, CDBC,DC是是ABC的中位線,的中位線,DC= BC= ,故答案為:故答案為: 31.(20

28、16臨沂)如圖,將一矩形紙片ABCD折疊,使兩個頂點A,C重合,折痕為FG若AB=4,BC=8,則ABF的面積為【分析】根據折疊的性質求出根據折疊的性質求出AF=CF,根據勾股定理得出關于根據勾股定理得出關于CF的方程,求出的方程,求出CF,求出,求出BF,根據面積公式求出即可,根據面積公式求出即可【解答】解:解:將一矩形紙片將一矩形紙片ABCD折疊,使兩個頂點折疊,使兩個頂點A,C重合,重合,折痕為折痕為FG,FG是是AC的垂直平分線,的垂直平分線,AF=CF,設設AF=FC=x,在在RtABF中,有勾股定理得:中,有勾股定理得:AB2+ +BF2=AF2,42+ +(8x)2=x2,解得:解得:x=5,即即CF=5,BF=85=3,ABF的面積為的面積為 34=6,故答案為:故答案為:66謝謝觀看!

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!