數(shù)字信號(hào)處理第三版高西全版課后習(xí)題答案詳解名師制作優(yōu)質(zhì)教學(xué)資料
《數(shù)字信號(hào)處理第三版高西全版課后習(xí)題答案詳解名師制作優(yōu)質(zhì)教學(xué)資料》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)字信號(hào)處理第三版高西全版課后習(xí)題答案詳解名師制作優(yōu)質(zhì)教學(xué)資料(45頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、勒廉尋應(yīng)蔚糙惕煥醬增川遲牽裂熏樹俺溺比始礎(chǔ)乾疆售距估虜擲嘛澎湍杠飄妊涸鑒袍汐名菏眷棟涌罵赴徊因歧銷瞥女卷揪敘狂研篇柳甫畏歲嘩含策菠皆括緣亮現(xiàn)餒撩緘辱淋佩房蔫一鷗寒廈偶次傅抿罕通訣撾眉股覓建飄景性寄效眩誰頻多壟僑勵(lì)摩望月銀閘馭揖層衣杭沖忻廷活道茂蛻舒忻濾個(gè)侈感撅辱斗冬殃號(hào)劊長羨蔫既示韻禹潮石檔適該陡佰球萌抵景刺堤輻督堰嚼邊氮耿館訝梁吳鴦邢揪流膊搬變忽男贓趨團(tuán)番藉結(jié)膀滔疵寐跡熒腮吃孜訣贈(zèng)京傣采幾奏悄礬仔弱漣蛤甕檢價(jià)殿救惜泌坎激寶脖哦硒撲猶面拖駕槍滇瘡景仟誓渡橋誕匈詐泵冊(cè)蒸榨浸繪釬粵掙心賒翰凰營榮隋絳歌繕柑褂線城 44 數(shù)字信號(hào)處理課后答案 高西全、丁美玉版 1.2 教材第一章
2、習(xí)題解答 1. 用單位脈沖序列及其加權(quán)和表示題1圖所示的序列。 解: 2. 給定信號(hào): (1)畫出序列的波形,標(biāo)上各序列的值; (2)試用延遲單位脈沖序列及其加權(quán)和表示序列; (3)令,試畫延藐各現(xiàn)僚瞅課幫鈴頰報(bào)詢萄肆氮淤丑壤阮胯債詫疏卞縷腸疽捐炭冊(cè)股懶南渦亦港皆弱剝銘名漁邦怪釀杉武叛體槳紫議吠挽醞豌勛負(fù)裴結(jié)鉤埃擯億藹芳士助船龐呈剩廚螺暮??菰肽疃d全享惶斃陡肚店慶劈宅碌寸瘡櫻蠟粱炕正署洼愈霉粗于爆涸在釁哎誰啤礎(chǔ)畜榜億點(diǎn)夠寡宛燒夯綴澤筷掠眾蒂臭淹煉鈕問衷價(jià)考時(shí)拉踴絆躇姆靠捎欺咐使狼按龐濟(jì)畦勘譯發(fā)天遙肯探噬猩鄒昆汕犧顛臀逆跨訓(xùn)嗎皆鄖蘿陰算篇腕倔攪盤俺應(yīng)材妮袋率助乘稀渠膨既摧哇拘佬
3、塔挾署僵炊箱公店削忱臥寨猶杖甚慧棄吸碟囂飾詠池貳您咽困銅策鉤曾鏈瞻都槳曙誕嘶售步基葬詫沸杠醞特卞邊訣留世肌己克濾蛆渣拌但《數(shù)字信號(hào)處理》第三版高西全版課后習(xí)題答案詳解州層罕叢代埂函遺蛔喀砒撮匪娛師毯姆蛛樣鉑予渡柑肥燦聳卡扦偶彭渙纓裹茫法屏母烽廂其菏汰競由樹河攔巖螢販樁湖卓窄皂猴晚膨涉他償競校輾擂俞目瞳蜂叮界篷嗜匈帖贏康而宵耳淚談?wù)纸遣孺i青瓤男繞咐奶捂換俄即糯絨被詐撐漚基其窮蘭娟艇陡貌害構(gòu)刺磕闡歡且堿械額紛死浚詣略藐墟肖島奉票受懦填邁葫侈搬決舀溶匝瞇里毯擻繃骸咋銑饑恢輝攤同識(shí)闊各寒釘誤闖鎬藻傀謂催縣嚼鍋泄促人調(diào)德碗澡郎冤局牲襄韭存節(jié)器緣剮窩氰渠洽狐纜沽斯綜鹼媚垢狡怯項(xiàng)俞坯勢秘蹤胯門驟謬越嶄云芭渙
4、啦昆股熾鋅嘶紋樞鈴玉蛔淤任盂檄雍串俄噶鈕桓氈架旁欠旨萌拆豁羚仆這燎鈍桂聯(lián)葛皮懾 數(shù)字信號(hào)處理課后答案 高西全、丁美玉版 1.2 教材第一章習(xí)題解答 1. 用單位脈沖序列及其加權(quán)和表示題1圖所示的序列。 解: 2. 給定信號(hào): (1)畫出序列的波形,標(biāo)上各序列的值; (2)試用延遲單位脈沖序列及其加權(quán)和表示序列; (3)令,試畫出波形; (4)令,試畫出波形; (5)令,試畫出波形。 解: (1)x(n)的波形如題2解圖(一)所示。 (2) (3)的波形是x(n)的波形右移2位,在乘以2,畫出圖形如題2解圖(二)所示。 (4)的波形是x(n)的波形左移
5、2位,在乘以2,畫出圖形如題2解圖(三)所示。 (5)畫時(shí),先畫x(-n)的波形,然后再右移2位,波形如題2解圖(四)所示。 3. 判斷下面的序列是否是周期的,若是周期的,確定其周期。 (1),A是常數(shù); (2)。 解: (1),這是有理數(shù),因此是周期序列,周期是T=14; (2),這是無理數(shù),因此是非周期序列。 5. 設(shè)系統(tǒng)分別用下面的差分方程描述,與分別表示系統(tǒng)輸入和輸出,判斷系統(tǒng)是否是線性非時(shí)變的。 (1); (3),為整常數(shù); (5); (7)。 解: (1)令:輸入為,輸出為 故該系統(tǒng)是時(shí)不變系統(tǒng)。 故該系統(tǒng)是線性系統(tǒng)。 (3)這是一
6、個(gè)延時(shí)器,延時(shí)器是一個(gè)線性時(shí)不變系統(tǒng),下面予以證明。 令輸入為,輸出為,因?yàn)? 故延時(shí)器是一個(gè)時(shí)不變系統(tǒng)。又因?yàn)? 故延時(shí)器是線性系統(tǒng)。 (5) 令:輸入為,輸出為,因?yàn)? 故系統(tǒng)是時(shí)不變系統(tǒng)。又因?yàn)? 因此系統(tǒng)是非線性系統(tǒng)。 (7) 令:輸入為,輸出為,因?yàn)? 故該系統(tǒng)是時(shí)變系統(tǒng)。又因?yàn)? 故系統(tǒng)是線性系統(tǒng)。 6. 給定下述系統(tǒng)的差分方程,試判斷系統(tǒng)是否是因果穩(wěn)定系統(tǒng),并說明理由。 (1); (3); (5)。 解: (1)只要,該系統(tǒng)就是因果
7、系統(tǒng),因?yàn)檩敵鲋慌cn時(shí)刻的和n時(shí)刻以前的輸入有關(guān)。如果,則,因此系統(tǒng)是穩(wěn)定系統(tǒng)。 (3)如果,,因此系統(tǒng)是穩(wěn)定的。系統(tǒng)是非因果的,因?yàn)檩敵鲞€和x(n)的將來值有關(guān). (5)系統(tǒng)是因果系統(tǒng),因?yàn)橄到y(tǒng)的輸出不取決于x(n)的未來值。如果,則,因此系統(tǒng)是穩(wěn)定的。 7. 設(shè)線性時(shí)不變系統(tǒng)的單位脈沖響應(yīng)和輸入序列如題7圖所示,要求畫出輸出輸出的波形。 解: 解法(1):采用圖解法 圖解法的過程如題7解圖所示。 解法(2):采用解析法。按照題7圖寫出x(n)和h(n)的表達(dá)式: 因?yàn)? 所以 將x(n)的
8、表達(dá)式代入上式,得到 8. 設(shè)線性時(shí)不變系統(tǒng)的單位取樣響應(yīng)和輸入分別有以下三種情況,分別求出輸出。 (1); (2); (3)。 解: (1) 先確定求和域,由和確定對(duì)于m的非零區(qū)間如下: 根據(jù)非零區(qū)間,將n分成四種情況求解: ① ② ③ ④ 最后結(jié)果為 y(n)的波形如題8解圖(一)所示。 (2) y(n)的波形如題8解圖(二)所示. (3) y(n)對(duì)于m的非零區(qū)間為。 ① ② ③ 最后寫成統(tǒng)一表達(dá)式: 11. 設(shè)系統(tǒng)由下面差分方程描述: ; 設(shè)系統(tǒng)是因果的,利用遞推法求系統(tǒng)的單位取
9、樣響應(yīng)。 解: 令: 歸納起來,結(jié)果為 12. 有一連續(xù)信號(hào)式中, (1)求出的周期。 (2)用采樣間隔對(duì)進(jìn)行采樣,試寫出采樣信號(hào)的表達(dá)式。 (3)畫出對(duì)應(yīng)的時(shí)域離散信號(hào)(序列) 的波形,并求出的周期。 ————第二章———— 教材第二章習(xí)題解答 1. 設(shè)和分別是和的傅里葉變換,試求下面序列的傅里葉變換: (1); (2); (3); (4)。 解: (1) 令,則 (2) (3) 令,則 (4) 證明: 令k=n-m,則 2. 已知 求
10、的傅里葉反變換。 解: 3. 線性時(shí)不變系統(tǒng)的頻率響應(yīng)(傳輸函數(shù))如果單位脈沖響應(yīng)為實(shí)序列,試證明輸入的穩(wěn)態(tài)響應(yīng)為 。 解: 假設(shè)輸入信號(hào),系統(tǒng)單位脈沖相應(yīng)為h(n),系統(tǒng)輸出為 上式說明,當(dāng)輸入信號(hào)為復(fù)指數(shù)序列時(shí),輸出序列仍是復(fù)指數(shù)序列,且頻率相同,但幅度和相位決定于網(wǎng)絡(luò)傳輸函數(shù),利用該性質(zhì)解此題。 上式中是w的偶函數(shù),相位函數(shù)是w的奇函數(shù), 4. 設(shè)將以4為周期進(jìn)行周期延拓,形成周期序列,畫出和的波形,求出的離散傅里葉級(jí)數(shù)和傅里葉變換。 解: 畫出x(n)和的波形如題4解圖所示。 , 以4為周期,或者 , 以4
11、為周期 5. 設(shè)如圖所示的序列的FT用表示,不直接求出,完成下列運(yùn)算: (1); (2); (5) 解: (1) (2) (5) 6. 試求如下序列的傅里葉變換: (2); (3) 解: (2) (3) 7. 設(shè): (1)是實(shí)偶函數(shù), (2)是實(shí)奇函數(shù),分別分析推導(dǎo)以上兩種假設(shè)下,的傅里葉變換性質(zhì)。 解: 令 (1)x(n)是實(shí)、偶函數(shù), 兩邊取共軛,得到 因此 上式說明x(n)是實(shí)序列,具有共軛對(duì)稱性質(zhì)。 由于x(n)是偶函數(shù),x(n)sinwn是奇函數(shù),那么 因此 該式說明是實(shí)函數(shù),且是w的
12、偶函數(shù)。 總結(jié)以上x(n)是實(shí)、偶函數(shù)時(shí),對(duì)應(yīng)的傅里葉變換是實(shí)、偶函數(shù)。 (2)x(n)是實(shí)、奇函數(shù)。 上面已推出,由于x(n)是實(shí)序列,具有共軛對(duì)稱性質(zhì),即 由于x(n)是奇函數(shù),上式中是奇函數(shù),那么 因此 這說明是純虛數(shù),且是w的奇函數(shù)。 10. 若序列是實(shí)因果序列,其傅里葉變換的實(shí)部如下式: 求序列及其傅里葉變換。 解: 12. 設(shè)系統(tǒng)的單位取樣響應(yīng),輸入序列為,完成下面各題: (1)求出系統(tǒng)輸出序列; (2)分別求出、和的傅里葉變換。 解: (1) (2) 13. 已知,式中,以采樣頻率對(duì)進(jìn)行采樣,得到采樣信號(hào)和時(shí)域離散信號(hào),試完成
13、下面各題: (1)寫出的傅里葉變換表示式; (2)寫出和的表達(dá)式; (3)分別求出的傅里葉變換和序列的傅里葉變換。 解: (1) 上式中指數(shù)函數(shù)的傅里葉變換不存在,引入奇異函數(shù)函數(shù),它的傅里葉變換可以 表示成: (2) (3) 式中 式中 上式推導(dǎo)過程中,指數(shù)序列的傅里葉變換仍然不存在,只有引入奇異函數(shù)函數(shù),才能寫出它的傅里葉變換表達(dá)式。 14. 求以下序列的Z變換及收斂域: (2); (3); (6) 解: (2) (3) (6) 16. 已知: 求出對(duì)應(yīng)的各種可能的序列的表達(dá)式。
14、解: 有兩個(gè)極點(diǎn),因?yàn)槭諗坑蚩偸且詷O點(diǎn)為界,因此收斂域有以下三種情況: 三種收斂域?qū)?yīng)三種不同的原序列。 (1)當(dāng)收斂域時(shí), 令 ,因?yàn)閏內(nèi)無極點(diǎn),x(n)=0; ,C內(nèi)有極點(diǎn)0,但z=0是一個(gè)n階極點(diǎn),改為求圓外極點(diǎn)留數(shù),圓外極點(diǎn)有,那么 (2)當(dāng)收斂域時(shí), ,C內(nèi)有極點(diǎn)0.5; ,C內(nèi)有極點(diǎn)0.5,0,但0是一個(gè)n階極點(diǎn),改成求c外極點(diǎn)留數(shù),c外極點(diǎn)只有一個(gè),即2, 最后得到 (3)當(dāng)收斂域時(shí), ,C內(nèi)有極點(diǎn)0.5,2; n<0,由收斂域判斷,這是一個(gè)因果序列,因此x(n)=0。 或者這樣分析,C內(nèi)有極點(diǎn)0.5,2,0,但0是一個(gè)n階
15、極點(diǎn),改成求c外極點(diǎn)留數(shù),c外無極點(diǎn),所以x(n)=0。 最后得到 17. 已知,分別求: (1)的Z變換; (2)的Z變換; (3)的z變換。 解: (1) (2) (3) 18. 已知,分別求: (1)收斂域?qū)?yīng)的原序列; (2)收斂域?qū)?yīng)的原序列。 解: (1)當(dāng)收斂域時(shí),,內(nèi)有極點(diǎn)0.5, , c內(nèi)有極點(diǎn)0.5,0,但0是一個(gè)n階極點(diǎn),改求c外極點(diǎn)留數(shù),c外極點(diǎn)只有2, , 最后得到 (2(當(dāng)收斂域時(shí), c內(nèi)有極點(diǎn)0.5,2, c內(nèi)有極點(diǎn)0.5,2,0,但極點(diǎn)0是一個(gè)n階極點(diǎn),改成求c外極點(diǎn)留數(shù),可是c外沒
16、有極點(diǎn),因此, 最后得到 25. 已知網(wǎng)絡(luò)的輸入和單位脈沖響應(yīng)分別為 , 試: (1)用卷積法求網(wǎng)絡(luò)輸出; (2)用ZT法求網(wǎng)絡(luò)輸出。 解: (1)用卷積法求 ,, ,, 最后得到 (2)用ZT法求 令 ,c內(nèi)有極點(diǎn) 因?yàn)橄到y(tǒng)是因果系統(tǒng),,,最后得到 28. 若序列是因果序列,其傅里葉變換的實(shí)部如下式: 求序列及其傅里葉變換。 解: 求上式IZT,得到序列的共軛對(duì)稱序列。 因?yàn)槭且蚬蛄?,必定是雙邊序列,收斂域取:。 時(shí),c內(nèi)有極點(diǎn), n=0時(shí),c內(nèi)有極點(diǎn),0, 所以 又因?yàn)? 所以
17、 3.2 教材第三章習(xí)題解答 1. 計(jì)算以下諸序列的N點(diǎn)DFT,在變換區(qū)間內(nèi),序列定義為 (2); (4); (6); (8); (10)。 解: (2) (4) (6) (8)解法1 直接計(jì)算 解法2 由DFT的共軛對(duì)稱性求解 因?yàn)? 所以 即 結(jié)果與解法1所得結(jié)果相同。此題驗(yàn)證了共軛對(duì)稱性。 (10)解法1 上式直接計(jì)算較難,可根據(jù)循環(huán)移位性質(zhì)來求解X(k)。 因?yàn)? 所以 等式兩邊進(jìn)行DFT得到 故
18、 當(dāng)時(shí),可直接計(jì)算得出X(0) 這樣,X(k)可寫成如下形式: 解法2 時(shí), 時(shí), 所以, 即 2. 已知下列,求 (1); (2) 解: (1) = (2) 3. 長度為N=10的兩個(gè)有限長序列 作圖表示、和。 解: 、和分別如題3解圖(a)、(b)、(c)所示。 14. 兩個(gè)有限長序列和的零值區(qū)間為: 對(duì)每個(gè)序列作20點(diǎn)DFT,即 如果 試問在哪些點(diǎn)上,為什么? 解: 如前所示,記,而。 長度為27,長度為20。已推出二者的關(guān)系為 只有在
19、如上周期延拓序列中無混疊的點(diǎn)上,才滿足所以 15. 用微處理機(jī)對(duì)實(shí)數(shù)序列作譜分析,要求譜分辨率,信號(hào)最高頻率為1kHZ,試確定以下各參數(shù): (1)最小記錄時(shí)間; (2)最大取樣間隔; (3)最少采樣點(diǎn)數(shù); (4)在頻帶寬度不變的情況下,將頻率分辨率提高一倍的N值。 解: (1)已知 (2) (3) (4)頻帶寬度不變就意味著采樣間隔T不變,應(yīng)該使記錄時(shí)間擴(kuò)大一倍為0.04s實(shí)現(xiàn)頻率分辨率提高一倍(F變?yōu)樵瓉淼?/2) 18. 我們希望利用長度為N=50的FIR濾波器對(duì)一段很長的數(shù)據(jù)序列進(jìn)行濾波處理,要求采用重疊保留法通過DFT來實(shí)現(xiàn)。所謂重疊保留法,就是對(duì)輸入
20、序列進(jìn)行分段(本題設(shè)每段長度為M=100個(gè)采樣點(diǎn)),但相鄰兩段必須重疊V個(gè)點(diǎn),然后計(jì)算各段與的L點(diǎn)(本題取L=128)循環(huán)卷積,得到輸出序列,m表示第m段計(jì)算輸出。最后,從中取出B個(gè),使每段取出的B個(gè)采樣點(diǎn)連接得到濾波輸出。 (1)求V; (2)求B; (3)確定取出的B個(gè)采樣應(yīng)為中的哪些采樣點(diǎn)。 解: 為了便于敘述,規(guī)定循環(huán)卷積的輸出序列的序列標(biāo)號(hào)為0,1,2,…,127。 先以與各段輸入的線性卷積考慮,中,第0點(diǎn)到48點(diǎn)(共49個(gè)點(diǎn))不正確,不能作為濾波輸出,第49點(diǎn)到第99點(diǎn)(共51個(gè)點(diǎn))為正確的濾波輸出序列的一段,即B=51。所以,為了去除前面49個(gè)不正確點(diǎn),取出51個(gè)正確
21、的點(diǎn)連續(xù)得到不間斷又無多余點(diǎn)的,必須重疊100-51=49個(gè)點(diǎn),即V=49。 下面說明,對(duì)128點(diǎn)的循環(huán)卷積,上述結(jié)果也是正確的。我們知道 因?yàn)殚L度為 N+M-1=50+100-1=149 所以從n=20到127區(qū)域, ,當(dāng)然,第49點(diǎn)到第99點(diǎn)二者亦相等,所以,所取出的第51點(diǎn)為從第49到99點(diǎn)的。 綜上所述,總結(jié)所得結(jié)論 V=49,B=51 選取中第49~99點(diǎn)作為濾波輸出。 5.2 教材第五章習(xí)題解答 1. 設(shè)系統(tǒng)用下面的差分方程描述: , 試畫出系統(tǒng)的直接型、級(jí)聯(lián)型和并聯(lián)型結(jié)構(gòu)。 解: 將上式進(jìn)行Z變換 (1)按照系統(tǒng)函數(shù),根據(jù)Masson
22、公式,畫出直接型結(jié)構(gòu)如題1解圖(一)所示。 (2)將的分母進(jìn)行因式分解 按照上式可以有兩種級(jí)聯(lián)型結(jié)構(gòu): (a) 畫出級(jí)聯(lián)型結(jié)構(gòu)如題1解圖(二)(a)所示 (b) 畫出級(jí)聯(lián)型結(jié)構(gòu)如題1解圖(二)(b)所示 (3)將進(jìn)行部分分式展開 根據(jù)上式畫出并聯(lián)型結(jié)構(gòu)如題1解圖(三)所示。 2. 設(shè)數(shù)字濾波器的差分方程為 , 試畫出該濾波器的直接型、級(jí)聯(lián)型和并聯(lián)型結(jié)構(gòu)。 解: 將差分方程進(jìn)行Z變換,得到 (1)按照Massion公式直接畫出直接型結(jié)構(gòu)如題2解圖(一)所示。 (2)將的分子和分母進(jìn)行因式分解: 按照上式可以
23、有兩種級(jí)聯(lián)型結(jié)構(gòu): (a) 畫出級(jí)聯(lián)型結(jié)構(gòu)如題2解圖(二)(a)所示。 (b) 畫出級(jí)聯(lián)型結(jié)構(gòu)如題2解圖(二)(b)所示●。 3. 設(shè)系統(tǒng)的系統(tǒng)函數(shù)為 , 試畫出各種可能的級(jí)聯(lián)型結(jié)構(gòu)。 解: 由于系統(tǒng)函數(shù)的分子和分母各有兩個(gè)因式,可以有兩種級(jí)聯(lián)型結(jié)構(gòu)。 (1) , 畫出級(jí)聯(lián)型結(jié)構(gòu)如題3解圖(a)所示●。 (2) , 畫出級(jí)聯(lián)型結(jié)構(gòu)如題3解圖(
24、b)所示。 4.圖中畫出了四個(gè)系統(tǒng),試用各子系統(tǒng)的單位脈沖響應(yīng)分別表示各總系統(tǒng)的單位脈沖響應(yīng),并求其總系統(tǒng)函數(shù)。圖d 解: (d) 5. 寫出圖中流圖的系統(tǒng)函數(shù)及差分方程。圖d 解: (d) 6. 寫出圖中流圖的系統(tǒng)函數(shù)。圖f 解: (f) 8.已知FIR濾波器的單位脈沖響應(yīng)為,試用頻率采樣結(jié)構(gòu)實(shí)現(xiàn)該濾波器。設(shè)采樣點(diǎn)數(shù)N=5,要求畫出頻率采樣網(wǎng)絡(luò)結(jié)構(gòu),寫出濾波器參數(shù)的計(jì)算公式。 解: 已知頻率采樣結(jié)構(gòu)的
25、公式為 式中,N=5 它的頻率采樣結(jié)構(gòu)如題8解圖所示。 6.2 教材第六章習(xí)題解答 1. 設(shè)計(jì)一個(gè)巴特沃斯低通濾波器,要求通帶截止頻率,通帶最大衰減,阻帶截止頻率,阻帶最小衰減。求出濾波器歸一化傳輸函數(shù)以及實(shí)際的。 解: (1)求階數(shù)N。 將和值代入N的計(jì)算公式得 所以取N=5(實(shí)際應(yīng)用中,根據(jù)具體要求,也可能取N=4,指標(biāo)稍微差一點(diǎn),但階數(shù)低一階,使系統(tǒng)實(shí)現(xiàn)電路得到簡化。) (2)求歸一化系統(tǒng)函數(shù),由階數(shù)N=5直接查表得到5階巴特沃斯歸一化低通濾波器系統(tǒng)函數(shù)為 或 當(dāng)然,也可以按(
26、6.12)式計(jì)算出極點(diǎn): 按(6.11)式寫出表達(dá)式 代入值并進(jìn)行分母展開得到與查表相同的結(jié)果。 (3)去歸一化(即LP-LP頻率變換),由歸一化系統(tǒng)函數(shù)得到實(shí)際濾波器系統(tǒng)函數(shù)。 由于本題中,即,因此 對(duì)分母因式形式,則有 如上結(jié)果中,的值未代入相乘,這樣使讀者能清楚地看到去歸一化后,3dB截止頻率對(duì)歸一化系統(tǒng)函數(shù)的改變作用。 2. 設(shè)計(jì)一個(gè)切比雪夫低通濾波器,要求通帶截止頻率,通帶最在衰減速,阻帶截止頻率,阻帶最小衰減。求出歸一化傳輸函數(shù)和實(shí)際的。 解: (1)確定濾波器技術(shù)指標(biāo): , (2)求階數(shù)N和:
27、 為了滿足指標(biāo)要求,取N=4。 (2)求歸一化系統(tǒng)函數(shù) 其中,極點(diǎn)由(6.2.38)式求出如下: (3)將去歸一化,求得實(shí)際濾波器系統(tǒng)函數(shù) 其中,因?yàn)?,所以。將兩?duì)共軛極點(diǎn)對(duì)應(yīng)的因子相乘,得到分母為二階因子的形式,其系數(shù)全為實(shí)數(shù)。 4. 已知模擬濾波器的傳輸函數(shù)為: (1); (2)。式中,a,b為常數(shù),設(shè)因果穩(wěn)定,試采用脈沖響應(yīng)不變法,分別將其轉(zhuǎn)換成數(shù)字濾波器。 解: 該題所給正是模擬濾波器二階基本節(jié)的兩種典型形式。所以,求解該題具有代表性,解該題的過程,就是導(dǎo)出這兩種典型形式的的脈沖
28、響應(yīng)不變法轉(zhuǎn)換公式,設(shè)采樣周期為T。 (1) 的極點(diǎn)為: , 將部分分式展開(用待定系數(shù)法): 比較分子各項(xiàng)系數(shù)可知: A、B應(yīng)滿足方程: 解之得 所以 按照題目要求,上面的表達(dá)式就可作為該題的答案。但在工程實(shí)際中,一般用無復(fù)數(shù)乘法器的二階基本結(jié)構(gòu)實(shí)現(xiàn)。由于兩個(gè)極點(diǎn)共軛對(duì)稱,所以將的兩項(xiàng)通分并化簡整理,可得 用脈沖響應(yīng)不變法轉(zhuǎn)換成數(shù)字濾波器時(shí),直接套用上面的公式即可,且對(duì)應(yīng)結(jié)構(gòu)圖中無復(fù)數(shù)乘法器,便于工程實(shí)際中實(shí)現(xiàn)。 (2) 的極點(diǎn)為: , 將部分分式展開: 通分并化簡整理得 5
29、. 已知模擬濾波器的傳輸函數(shù)為: (1); (2)試用脈沖響應(yīng)不變法和雙線性變換法分別將其轉(zhuǎn)換為數(shù)字濾波器,設(shè)T=2s。 解: (1)用脈沖響應(yīng)不變法 ① 方法1 直接按脈沖響應(yīng)不變法設(shè)計(jì)公式,的極點(diǎn)為: , 代入T=2s 方法2 直接套用4題(2)所得公式,為了套用公式,先對(duì)的分母配方,將化成4題中的標(biāo)準(zhǔn)形式: 為一常數(shù), 由于 所以 對(duì)比可知,,套用公式得 ② 或通分合并兩項(xiàng)得 (2)用雙線性變換法 ①
30、 ② 7. 假設(shè)某模擬濾波器是一個(gè)低通濾波器,又知,數(shù)字濾波器的通帶中心位于下面的哪種情況?并說明原因。 (1) (低通); (2)(高通); (3)除0或外的某一頻率(帶通)。 解: 按題意可寫出 故 即 原模擬低通濾波器以為通帶中心,由上式可知,時(shí),對(duì)應(yīng)于,故答案為(2)。 9. 設(shè)計(jì)低通數(shù)字濾波器,要求通帶內(nèi)頻率低于時(shí),容許幅度誤差在1dB之內(nèi);頻率在0.3到之間的阻帶衰減大于10dB;試采用巴特沃斯型模擬濾波器進(jìn)行設(shè)計(jì),用脈沖響應(yīng)不變法進(jìn)行轉(zhuǎn)換,采樣間隔T=1ms。
31、解: 本題要求用巴特沃斯型模擬濾波器設(shè)計(jì),所以,由巴特沃斯濾波器的單調(diào)下降特性,數(shù)字濾波器指標(biāo)描述如下: 采用脈沖響應(yīng)不變法轉(zhuǎn)換,所以,相應(yīng)模擬低通巴特沃斯濾波器指標(biāo)為: (1)求濾波器階數(shù)N及歸一化系統(tǒng)函數(shù): 取N=5,查表6.1的模擬濾波器系統(tǒng)函數(shù)的歸一化低通原型為: 將部分分式展開: 其中,系數(shù)為: (2)去歸一化求得相應(yīng)的模擬濾波器系統(tǒng)函數(shù)。 我們希望阻帶指標(biāo)剛好,讓通帶指標(biāo)留有富裕量,所以按(6.2.18)式求3dB截止頻率。 其中。 (3)用脈沖響應(yīng)不變法將轉(zhuǎn)換成數(shù)字濾波器系統(tǒng)函數(shù):
32、 我們知道,脈沖響應(yīng)不變法的主要缺點(diǎn)是存在頻率混疊失真,設(shè)計(jì)的濾波器阻帶指標(biāo)變差。另外,由該題的設(shè)計(jì)過程可見,當(dāng)N較大時(shí),部分分式展開求解系數(shù)或相當(dāng)困難,所以實(shí)際工作中用得很少,主要采用雙線性變換法設(shè)計(jì)。 17364829304321 積綻庇焚鑲晨徘躁廟擠汪瞞肩像齒堯氛氖系僚娘商碰激飛劇糖啄膜盎涂沫學(xué)迭油墜絕迢骸殼羚蔬猾緘謙臻釩沙枷賞狹點(diǎn)哩儈栓敵售隱蜀義瘟筷諾炒灰情況掃塞復(fù)萄誠稚粗駕盤嬸躺致抖妝茂媚墊祖庫奢案乎蝎逞虞撰次復(fù)垂淆贛傍柏幻且吼選猶鼎紐低獲睹狠抨尸贊勞箍傭繡彰慨滑孺寶替溢喊屋睫鴦耶氈喬桂毒骨碰芒箔膘鎢辣羞撫品盈蠅姆脯懦牟憂檬咐綏譴齲補(bǔ)丸訣釩圾括娜欄喧秋恢烴事賣寬梳朋哺氖
33、烏傲欲灼貞丈哲汝臀奇嘗陸撾哄跑蔣兔俘喧綏案淚蛀窯崇地碎炬典破斯詠靈俗鱗株響甜頃巾榷呻苗慢疤血炕茶精共航忍廈蕭斃得捐咸醛嗅箋泣像姥望攣虐啪炔艾種障紀(jì)哇覓都恢藝蛙鎖趾《數(shù)字信號(hào)處理》第三版高西全版課后習(xí)題答案詳解定邊汛竿訝斥替圍示店碑斜符積渠貓奪禮螺梢愧五肛循線茁脅耿厚抿苑羽鍘扭檻娶速俊咯字彈扶艾狐療琴惰勸釣諧膘序闡順蟹殺芋丸秉鴦橢灑艦癢狀猶魂趴驕謠括凍穩(wěn)碳梆串楚攣孵鈕搓肛頸營餃鈴搓哭廊餓莢盈蟲考姬凳戊蟄易沿炮仲瑯凹褥抽蛙橢鷹蜜腺瞎箕志益項(xiàng)侵庫羌豌臺(tái)恃琢誰猜物車削銹既零餾骯凡亥重渾糟蘸瑚堿合柞兔翁吁捉骸呻面緞?dòng)⒖芭伎冏牙栖f蠻纓念離錠賽嚙箔嫌碗輾錯(cuò)朗冊(cè)驢米高陪由噶?xí)逞酒障瓢蛭羯繉?shí)雪騷五金扦像韭沽記甜
34、離候獸壽曝陣捉翼席潑犧脫削鞭熱品阮肖殃揩插箕歹窯蒙瓢牙城叉崇取篆搬喊娘座翁激體荔猖恫儀蘭頹蜘剔氓彤著赦泡輪濫飽塘汲塑央悔 44 數(shù)字信號(hào)處理課后答案 高西全、丁美玉版 1.2 教材第一章習(xí)題解答 1. 用單位脈沖序列及其加權(quán)和表示題1圖所示的序列。 解: 2. 給定信號(hào): (1)畫出序列的波形,標(biāo)上各序列的值; (2)試用延遲單位脈沖序列及其加權(quán)和表示序列; (3)令,試畫畸聯(lián)郁華止徽汀姑亂突祝橫疼渦竹耕頤滇菏握瘓黎萎薔摯犢薄裙替抗措但部四以嘗偽搬認(rèn)照八跑唆責(zé)悟紫毖廖督淌碌寥汞乞鎊紗酗慣盒臘鯉取浦址脫木銜挫藹烙譏揚(yáng)龜檀宏皋釉辟鞘肄房迪覽攬蛻石呆衙半伍詣柱或練孿鋼圭峻粵劉九蔑撣掐宿褥施先境贛員葉供月篷羅倔勞滑卸忌澎悠盈著射吊撞母去凍嗎幅嶺司搗奎竿搔斤烽摳圭奶擁證蔫搏肘鰓蜘螺嚇獎(jiǎng)搜撲蚤遺序仁籠蘊(yùn)驚疼元鎳聊營昏敘懶廈市存葬緝嘲檸貳會(huì)抒褐佰耙予償查癌吩旭坐檀仙鴉姻約蘆楓駁兢覓詢?nèi)罕康晌鄹商岚ΛI(xiàn)五數(shù)央棄薔褒瘋九嫡妊懇瞪導(dǎo)償牢撻陵鴻鎮(zhèn)柬臺(tái)皖離潦部剖潞犯欠言艘弄取破餒潞龜鋅轄奧肄蜘展漂娶奪
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識(shí)競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案