計(jì)算機(jī)網(wǎng)絡(luò) 自頂向下方法 英文PPT課件
《計(jì)算機(jī)網(wǎng)絡(luò) 自頂向下方法 英文PPT課件》由會員分享,可在線閱讀,更多相關(guān)《計(jì)算機(jī)網(wǎng)絡(luò) 自頂向下方法 英文PPT課件(62頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、6-1Chapter 6: Wireless and Mobile NetworksBackground: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet access two important (but different) challenges communication over wir
2、eless link handling mobile user who changes point of attachment to network第1頁/共62頁6-2Chapter 6 outline6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs (“wi-fi”) 6.4 Cellular Internet Access architecture standards (e.g., GSM)Mobility 6.5 Principles: add
3、ressing and routing to mobile users 6.6 Mobile IP 6.7 Handling mobility in cellular networks 6.8 Mobility and higher-layer protocols6.9 Summary第2頁/共62頁6-3Elements of a wireless networknetwork infrastructurewireless hostsrlaptop, PDA, IP phonerrun applicationsrmay be stationary (non-mobile) or mobile
4、mwireless does not always mean mobility第3頁/共62頁6-4Elements of a wireless networknetwork infrastructure base stationrtypically connected to wired networkrrelay - responsible for sending packets between wired network and wireless host(s) in its “area”me.g., cell towers 802.11 access points 第4頁/共62頁6-5
5、Elements of a wireless networknetwork infrastructure wireless linkrtypically used to connect mobile(s) to base stationralso used as backbone link rmultiple access protocol coordinates link access rvarious data rates, transmission distance第5頁/共62頁6-6Characteristics of selected wireless link standards
6、384 Kbps56 Kbps54 Mbps5-11 Mbps1 Mbps802.15802.11b802.11a,gIS-95 CDMA, GSMUMTS/WCDMA, CDMA2000 .11 p-to-p link2G3GIndoor10 30mOutdoor50 200mMid rangeoutdoor200m 4KmLong rangeoutdoor5Km 20Km第6頁/共62頁6-7Elements of a wireless networknetwork infrastructure infrastructure moderbase station connects mobil
7、es into wired networkrhandoff: mobile changes base station providing connection into wired network第7頁/共62頁6-8Elements of a wireless networkAd hoc moderno base stationsrnodes can only transmit to other nodes within link coveragernodes organize themselves into a network: route among themselves第8頁/共62頁
8、6-9Wireless Link CharacteristicsDifferences from wired link . decreased signal strength: radio signal attenuates as it propagates through matter (path loss) interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (moto
9、rs) interfere as well multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times. make communication across (even a point to point) wireless link much more “difficult” 第9頁/共62頁6-10Wireless network characteristicsMultiple wireless senders and
10、receivers create additional problems (beyond multiple access):ABCHidden terminal problemrB, A hear each otherrB, C hear each otherrA, C can not hear each othermeans A, C unaware of their interference at BABCAs signalstrengthspaceCs signalstrengthSignal fading:rB, A hear each otherrB, C hear each oth
11、errA, C can not hear each other interferring at B第10頁/共62頁6-11Code Division Multiple Access (CDMA) used in several wireless broadcast channels (cellular, satellite, etc) standards unique “code” assigned to each user; i.e., code set partitioning all users share same frequency, but each user has own “
12、chipping” sequence (i.e., code) to encode dataencoded signal = (original data) X (chipping sequence)decoding: inner-product of encoded signal and chipping sequence allows multiple users to “coexist” and transmit simultaneously with minimal interference (if codes are “orthogonal”)第11頁/共62頁6-12CDMA En
13、code/Decodeslot 1slot 0d1 = -11 1 111 -1 -1 -1 -Zi,m= di.cmd0 = 11 1 111 -1 -1 -1 -1 1 111 -1 -1 -1 -1 1 111 -1 -1 -1 -slot 0channeloutputslot 1channeloutputchannel output Zi,msendercodedatabitsslot 1slot 0d1 = -1d0 = 11 1 111 -1 -1 -1 -1 1 111 -1 -1 -1 -1 1 111 -1 -1 -1 -1 1 111 -1 -1 -1 -slot 0cha
14、nneloutputslot 1channeloutputreceivercodereceivedinputDi = S Zi,m.cmm=1MM第12頁/共62頁6-13CDMA: two-sender interference第13頁/共62頁6-14Chapter 6 outline6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs (“wi-fi”) 6.4 Cellular Internet Access architecture standa
15、rds (e.g., GSM)Mobility 6.5 Principles: addressing and routing to mobile users 6.6 Mobile IP 6.7 Handling mobility in cellular networks 6.8 Mobility and higher-layer protocols6.9 Summary第14頁/共62頁6-15IEEE 802.11 Wireless LAN 802.11b 2.4-5 GHz unlicensed radio spectrum up to 11 Mbps direct sequence sp
16、read spectrum (DSSS) in physical layer all hosts use same chipping code widely deployed, using base stations 802.11a 5-6 GHz range up to 54 Mbps 802.11g 2.4-5 GHz range up to 54 Mbps All use CSMA/CA for multiple access All have base-station and ad-hoc network versions第15頁/共62頁6-16802.11 LAN architec
17、turerwireless host communicates with base stationmbase station = access point (AP)rBasic Service Set (BSS) (aka “cell”) in infrastructure mode contains:mwireless hostsmaccess point (AP): base stationmad hoc mode: hosts onlyBSS 1BSS 2Internethub, switchor routerAPAP第16頁/共62頁6-17802.11: Channels, asso
18、ciation 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies AP admin chooses frequency for AP interference possible: channel can be same as that chosen by neighboring AP! host: must associate with an AP scans channels, listening for beacon frames containing APs name (
19、SSID) and MAC address selects AP to associate with may perform authentication Chapter 8 will typically run DHCP to get IP address in APs subnet第17頁/共62頁6-18IEEE 802.11: multiple access avoid collisions: 2+ nodes transmitting at same time 802.11: CSMA - sense before transmitting dont collide with ong
20、oing transmission by other node 802.11: no collision detection! difficult to receive (sense collisions) when transmitting due to weak received signals (fading) cant sense all collisions in any case: hidden terminal, fading goal: avoid collisions: CSMA/C(ollision)A(voidance)ABCABCAs signalstrengthspa
21、ceCs signalstrength第18頁/共62頁6-19IEEE 802.11 MAC Protocol: CSMA/CA802.11 sender1 if sense channel idle for DIFS then transmit entire frame (no CD)2 if sense channel busy then start random backoff timetimer counts down while channel idletransmit when timer expiresif no ACK, increase random backoff int
22、erval, repeat 2802.11 receiver- if frame received OK return ACK after SIFS (ACK needed due to hidden terminal problem) senderreceiverDIFSdataSIFSACK第19頁/共62頁6-20Avoiding collisions (more)idea: allow sender to “reserve” channel rather than random access of data frames: avoid collisions of long data f
23、rames sender first transmits small request-to-send (RTS) packets to BS using CSMA RTSs may still collide with each other (but theyre short) BS broadcasts clear-to-send CTS in response to RTS RTS heard by all nodes sender transmits data frame other stations defer transmissions Avoid data frame collis
24、ions completely using small reservation packets!第20頁/共62頁6-21Collision Avoidance: RTS-CTS exchangeAPABtimeRTS(A)RTS(B)RTS(A)CTS(A)CTS(A)DATA (A)ACK(A)ACK(A)reservation collisiondefer第21頁/共62頁6-22framecontroldurationaddress1address2address4address3payloadCRC22666260 - 23124seqcontrol802.11 frame: add
25、ressingAddress 2: MAC addressof wireless host or AP transmitting this frameAddress 1: MAC addressof wireless host or AP to receive this frameAddress 3: MAC addressof router interface to which AP is attachedAddress 4: used only in ad hoc mode第22頁/共62頁6-23InternetrouterAPH1R1AP MAC addr H1 MAC addr R1
26、 MAC addraddress 1address 2address 3802.11 frameR1 MAC addr AP MAC addr dest. address source address 802.3 frame802.11 frame: addressing第23頁/共62頁6-24framecontroldurationaddress1address2address4address3payloadCRC22666260 - 23124seqcontrolTypeFromAPSubtypeToAPMore fragWEPMoredataPowermgtRetryRsvdProto
27、colversion22411111111802.11 frame: moreduration of reserved transmission time (RTS/CTS)frame seq #(for reliable ARQ)frame type(RTS, CTS, ACK, data)第24頁/共62頁6-25hub or switchAP 2AP 1H1BBS 2BBS 1802.11: mobility within same subnetrouter H1 remains in same IP subnet: IP address can remain same switch:
28、which AP is associated with H1? self-learning (Ch. 5): switch will see frame from H1 and “remember” which switch port can be used to reach H1第25頁/共62頁6-26Mradius ofcoverageSSSPPPPMSMaster deviceSlave deviceParked device (inactive)P802.15: personal area network less than 10 m diameter replacement for
29、 cables (mouse, keyboard, headphones) ad hoc: no infrastructure master/slaves: slaves request permission to send (to master) master grants requests 802.15: evolved from Bluetooth specification 2.4-2.5 GHz radio band up to 721 kbps第26頁/共62頁6-27Chapter 6 outline6.1 Introduction Wireless 6.2 Wireless l
30、inks, characteristics CDMA 6.3 IEEE 802.11 wireless LANs (“wi-fi”) 6.4 Cellular Internet Access architecture standards (e.g., GSM)Mobility 6.5 Principles: addressing and routing to mobile users 6.6 Mobile IP 6.7 Handling mobility in cellular networks 6.8 Mobility and higher-layer protocols6.9 Summar
31、y第27頁/共62頁6-28Mobile Switching CenterPublic telephonenetwork, andInternetMobile Switching CenterComponents of cellular network architectureq connects cells to wide area netq manages call setup (more later!)q handles mobility (more later!)MSCq covers geographical regionq base station (BS) analogous t
32、o 802.11 APq mobile users attach to network through BSq air-interface: physical and link layer protocol between mobile and BScellwired network第28頁/共62頁6-29Cellular networks: the first hopTwo techniques for sharing mobile-to-BS radio spectrum combined FDMA/TDMA: divide spectrum in frequency channels,
33、 divide each channel into time slots CDMA: code division multiple accessfrequencybandstime slots第29頁/共62頁6-30Cellular standards: brief survey2G systems: voice channels IS-136 TDMA: combined FDMA/TDMA (north america) GSM (global system for mobile communications): combined FDMA/TDMA most widely deploy
34、ed IS-95 CDMA: code division multiple accessIS-136GSMIS-95GPRSEDGECDMA-2000UMTSTDMA/FDMADont drown in a bowlof alphabet soup: use thisoor reference only第30頁/共62頁6-31Cellular standards: brief survey2.5 G systems: voice and data channels for those who cant wait for 3G service: 2G extensions general pa
35、cket radio service (GPRS) evolved from GSM data sent on multiple channels (if available) enhanced data rates for global evolution (EDGE) also evolved from GSM, using enhanced modulation Date rates up to 384K CDMA-2000 (phase 1) data rates up to 144K evolved from IS-95第31頁/共62頁6-32Cellular standards:
36、 brief survey3G systems: voice/data Universal Mobile Telecommunications Service (UMTS) GSM next step, but using CDMA CDMA-2000 TDS-CDMA . more (and more interesting) cellular topics due to mobility (stay tuned for details)第32頁/共62頁6-33Chapter 6 outline6.1 Introduction Wireless 6.2 Wireless links, ch
37、aracteristics CDMA 6.3 IEEE 802.11 wireless LANs (“wi-fi”) 6.4 Cellular Internet Access architecture standards (e.g., GSM)Mobility 6.5 Principles: addressing and routing to mobile users 6.6 Mobile IP 6.7 Handling mobility in cellular networks 6.8 Mobility and higher-layer protocols6.9 Summary第33頁/共6
38、2頁6-34What is mobility? spectrum of mobility, from the network perspective:no mobilityhigh mobilitymobile wireless user, using same access pointmobile user, passing through multiple access point while maintaining ongoing connections (like cell phone)mobile user, connecting/ disconnecting from networ
39、k using DHCP. 第34頁/共62頁6-35Mobility: Vocabularyhome network: permanent “home” of mobilePermanent address: address in home network, can always be used to reach mobilehome agent: entity that will perform mobility functions on behalf of mobile, when mobile is remotewide area networkcorrespondent第35頁/共6
40、2頁6-36Mobility: more vocabularyCare-of-address: address in visited network.wide area networkvisited network: network in which mobile currently resides Permanent address: remains constant (foreign agent: entity in visited network that performs mobility functions on behalf of mobile. correspondent: wa
41、nts to communicate with mobile第36頁/共62頁6-37How do you contact a mobile friend: search all phone books? call her parents? expect her to let you know where he/she is?I wonder where Alice moved to?Consider friend frequently changing addresses, how do you find her?第37頁/共62頁6-38Mobility: approachesLet ro
42、uting handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange. routing tables indicate where each mobile located no changes to end-systemsLet end-systems handle it: indirect routing: communication from correspondent to mobile goes through home age
43、nt, then forwarded to remotedirect routing: correspondent gets foreign address of mobile, sends directly to mobile第38頁/共62頁6-39Mobility: approachesLet routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange. routing tables indicate where e
44、ach mobile located no changes to end-systemslet end-systems handle it: indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remotedirect routing: correspondent gets foreign address of mobile, sends directly to mobilenot scalable to millions of mobil
45、es第39頁/共62頁6-40Mobility: registrationEnd result: Foreign agent knows about mobile Home agent knows location of mobilewide area networkhome networkvisited network1mobile contacts foreign agent on entering visited network2foreign agent contacts home agent home: “this mobile is resident in my network”第
46、40頁/共62頁6-41Mobility via Indirect Routingwide area networkhomenetworkvisitednetwork3241correspondent addresses packets using home address of mobilehome agent intercepts packets, forwards to foreign agentforeign agent receives packets, forwards to mobilemobile replies directly to correspondent第41頁/共6
47、2頁6-42Indirect Routing: comments Mobile uses two addresses: permanent address: used by correspondent (hence mobile location is transparent to correspondent) care-of-address: used by home agent to forward datagrams to mobile foreign agent functions may be done by mobile itself triangle routing: corre
48、spondent-home-network-mobile inefficient when correspondent, mobile are in same network第42頁/共62頁6-43Indirect Routing: moving between networks suppose mobile user moves to another network registers with new foreign agent new foreign agent registers with home agent home agent update care-of-address fo
49、r mobile packets continue to be forwarded to mobile (but with new care-of-address) mobility, changing foreign networks transparent: on going connections can be maintained!第43頁/共62頁6-44Mobility via Direct Routingwide area networkhomenetworkvisitednetwork4241correspondent requests, receives foreign ad
50、dress of mobilecorrespondent forwards to foreign agentforeign agent receives packets, forwards to mobilemobile replies directly to correspondent3第44頁/共62頁6-45Mobility via Direct Routing: comments overcome triangle routing problem non-transparent to correspondent: correspondent must get care-of-addre
51、ss from home agent what if mobile changes visited network?第45頁/共62頁6-46wide area network1foreign net visited at session startanchorforeignagent24new foreignagent35correspondentagentcorrespondentnew foreignnetworkAccommodating mobility with direct routing anchor foreign agent: FA in first visited net
52、work data always routed first to anchor FA when mobile moves: new FA arranges to have data forwarded from old FA (chaining)第46頁/共62頁6-47Chapter 6 outline6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs (“wi-fi”) 6.4 Cellular Internet Access architectur
53、e standards (e.g., GSM)Mobility 6.5 Principles: addressing and routing to mobile users 6.6 Mobile IP 6.7 Handling mobility in cellular networks 6.8 Mobility and higher-layer protocols6.9 Summary第47頁/共62頁6-48Mobile IP RFC 3220 has many features weve seen: home agents, foreign agents, foreign-agent re
54、gistration, care-of-addresses, encapsulation (packet-within-a-packet) three components to standard: indirect routing of datagrams agent discovery registration with home agent第48頁/共62頁6-49Mobile IP: indirect routingdest: 128.119.40.186packet sent by correspondentdest: 79.129.13.2dest: 128.119.40.186p
55、acket sent by home agent to foreign agent: a packet within a packetdest: 128.119.40.186foreign-agent-to-mobile packet第49頁/共62頁6-50Mobile IP: agent discovery agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (typefield = 9) RBHFMGV bits reserved type = 16 type =
56、 9 code = 0 = 9 checksum = 9 router address standard ICMP fields mobility agent advertisement extension length sequence # registration lifetime 0 or more care-of-addresses 0 8 16 24 R bit: registration requiredH,F bits: home and/or foreign agent第50頁/共62頁6-51Mobile IP: registration example visited ne
57、twork: 79.129.13/24 home agent HA: 128.119.40.7 foreign agent COA: 79.129.13.2 COA: 79.129.13.2 . ICMP agent adv. Mobile agent MA: 128.119.40.186 registration req. COA: 79.129.13.2 HA: 128.119.40.7 MA: 128.119.40.186 Lifetime: 9999 identification:714 . registration req. COA: 79.129.13.2 HA: 128.119.
58、40.7 MA: 128.119.40.186 Lifetime: 9999 identification: 714 encapsulation format . registration reply HA: 128.119.40.7 MA: 128.119.40.186 Lifetime: 4999 Identification: 714 encapsulation format . registration reply HA: 128.119.40.7 MA: 128.119.40.186 Lifetime: 4999 Identification: 714 . time 第51頁/共62
59、頁6-52Components of cellular network architecturecorrespondentMSCMSCMSCMSCMSCwired public telephonenetworkdifferent cellular networks,operated by different providersrecall:第52頁/共62頁6-53Handling mobility in cellular networkshome network: network of cellular provider you subscribe to (e.g., Sprint PCS,
60、 Verizon)home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)visited network: network in which mobile currently residesvisitor location register
61、 (VLR): database with entry for each user currently in network could be home network第53頁/共62頁6-54Public switched telephonenetwork mobileuserhomeMobile Switching CenterHLRhome networkvisitednetworkcorrespondentMobile Switching CenterVLRGSM: indirect routing to mobile1call routed to home network2home
62、MSC consults HLR,gets roaming number ofmobile in visited network3home MSC sets up 2nd leg of callto MSC in visited network4MSC in visited network completescall through base station to mobile第54頁/共62頁6-55Mobile Switching CenterVLRold BSSnew BSSold routingnewroutingGSM: handoff with common MSC Handoff
63、 goal: route call via new base station (without interruption) reasons for handoff: stronger signal to/from new BSS (continuing connectivity, less battery drain) load balance: free up channel in current BSS GSM doesnt mandate why to perform handoff (policy), only how (mechanism) handoff initiated by
64、old BSS第55頁/共62頁6-56Mobile Switching CenterVLRold BSS13245678GSM: handoff with common MSCnew BSS1. old BSS informs MSC of impending handoff, provides list of 1+ new BSSs 2. MSC sets up path (allocates resources) to new BSS3. new BSS allocates radio channel for use by mobile4. new BSS signals MSC, ol
65、d BSS: ready 5. old BSS tells mobile: perform handoff to new BSS6. mobile, new BSS signal to activate new channel7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call8 MSC-old-BSS resources released第56頁/共62頁6-57home networkHome MSCPSTNcorrespondentMSCanchor MSCMSCMSC(a) before ha
66、ndoffGSM: handoff between MSCsanchor MSC: first MSC visited during cal call remains routed through anchor MSC new MSCs add on to end of MSC chain as mobile moves to new MSC IS-41 allows optional path minimization step to shorten multi-MSC chain第57頁/共62頁6-58home networkHome MSCPSTNcorrespondentMSCanchor MSCMSCMSC(b) after handoffGSM: handoff between MSCsranchor MSC: first MSC visited during calmcall remains routed through anchor MSCrnew MSCs add on to end of MSC chain as mobile moves to new MSCrI
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報(bào)獎勵制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)