九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2018-2019學(xué)年九年級(jí)數(shù)學(xué)上冊(cè) 第二十四章 圓 小專(zhuān)題13 證明切線的兩種常用方法習(xí)題 (新版)新人教版

上傳人:Sc****h 文檔編號(hào):81184867 上傳時(shí)間:2022-04-26 格式:DOC 頁(yè)數(shù):7 大?。?27KB
收藏 版權(quán)申訴 舉報(bào) 下載
2018-2019學(xué)年九年級(jí)數(shù)學(xué)上冊(cè) 第二十四章 圓 小專(zhuān)題13 證明切線的兩種常用方法習(xí)題 (新版)新人教版_第1頁(yè)
第1頁(yè) / 共7頁(yè)
2018-2019學(xué)年九年級(jí)數(shù)學(xué)上冊(cè) 第二十四章 圓 小專(zhuān)題13 證明切線的兩種常用方法習(xí)題 (新版)新人教版_第2頁(yè)
第2頁(yè) / 共7頁(yè)
2018-2019學(xué)年九年級(jí)數(shù)學(xué)上冊(cè) 第二十四章 圓 小專(zhuān)題13 證明切線的兩種常用方法習(xí)題 (新版)新人教版_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2018-2019學(xué)年九年級(jí)數(shù)學(xué)上冊(cè) 第二十四章 圓 小專(zhuān)題13 證明切線的兩種常用方法習(xí)題 (新版)新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年九年級(jí)數(shù)學(xué)上冊(cè) 第二十四章 圓 小專(zhuān)題13 證明切線的兩種常用方法習(xí)題 (新版)新人教版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 小專(zhuān)題13 證明切線的兩種常用方法 類(lèi)型1 直線與圓有交點(diǎn)   直線過(guò)圓上某一點(diǎn),證明直線是圓的切線時(shí),只需“連半徑,證垂直,得切線”.“證垂直”時(shí)通常利用圓中的關(guān)系得到90°的角,如直徑所對(duì)的圓周角等于90°等. 【例1】 (山西中考改編)如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)P是直徑AB上的一點(diǎn)(不與A,B重合),過(guò)點(diǎn)P作AB的垂線交BC的延長(zhǎng)線于點(diǎn)Q.在線段PQ上取一點(diǎn)D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關(guān)系,并說(shuō)明理由. 解:CD是⊙O的切線. 理由:連接OC,∵OC=OB,∴∠B=∠OCB. 又∵DC=DQ,∴∠Q=∠DCQ. ∵PQ⊥AB,∴

2、∠QPB=90°. ∴∠B+∠Q=90°. ∴∠OCB+∠DCQ=90°. ∴∠DCO=∠180°-(∠OCB+∠DCQ)=90°. ∴OC⊥DC. ∵OC是⊙O的半徑,∴CD是⊙O的切線. 1.(山西中考改編)如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°.試判斷CD與⊙O的位置關(guān)系,并說(shuō)明理由. 解:CD與⊙O相切. 理由:連接OD, 則∠AOD=2∠AED=2×45°=90°, ∵四邊形ABCD是平行四邊形, ∴AB∥DC. ∴∠CDO=∠AOD=90°. ∴OD⊥CD. ∵OD是⊙O的半徑, ∴CD

3、與⊙O相切. 2.(常德中考)如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長(zhǎng)AD到點(diǎn)E,且有∠EBD=∠CAB.求證:BE是⊙O的切線. 證明:連接OB,∵BD=BC, ∴∠CAB=∠BAD. ∵∠EBD=∠CAB, ∴∠BAD=∠EBD. ∵OA=BO, ∴∠BAD=∠ABO. ∴∠EBD=∠ABO. ∵AD是⊙O的直徑, ∴∠ABD=90°. ∴∠OBE=∠EBD+∠OBD=∠ABO+∠OBD=∠ABD=90°. ∵點(diǎn)B在⊙O上,且OB為⊙O的半徑, ∴BE是⊙O的切線. 3.如圖,△ABC中,AB=AC,以AB為直徑的⊙O交

4、BC于E,D為AC延長(zhǎng)線上一點(diǎn),且∠DBC=∠CAB,求證:BD是⊙O的切線. 證明:連接AE,∵AB為⊙O的直徑,∴∠AEB=90°. 又∵AB=AC, ∴AE平分∠CAB. ∴∠BAE=∠BAC, ∵∠DBC=∠CAB, ∴∠DBC=∠BAE. ∵∠BAE+∠ABE=90°, ∴∠DBC+∠ABE=90°,即∠ABD=90°. ∴BD⊥OB.又OB為⊙O的半徑, ∴BD是⊙O的切線. 4.(永州中考改編)如圖,△ABC是⊙O的內(nèi)接三角形,AB為直徑,過(guò)點(diǎn)B的切線與AC的延長(zhǎng)線交于點(diǎn)D,E是BD中點(diǎn),連接CE.求證:CE是⊙O的切線. 證明:連接CO,OE

5、, ∵AB為⊙O的直徑, ∴∠ACB=90°.∴∠BCD=90°. ∵E是BD中點(diǎn), ∴CE=BE=BD. 又∵OC=OB,OE=OE, ∴△COE≌△BOE.∴∠OCE=∠OBE. ∵BD為⊙O的切線,∴∠OBE=90°. ∴∠OCE=90°.∴CE是⊙O的切線. 5.(麗水中考)如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD,BC的延長(zhǎng)線相交于點(diǎn)E. (1)求證:AD是半圓O的切線; (2)連接CD,求證:∠A=2∠CDE. 證明:(1)連接OD,BD, ∵AB是⊙O的切線, ∴AB⊥BC,即∠ABO=90°. ∵AB=AD,

6、 ∴∠ABD=∠ADB. ∵OB=OD, ∴∠DBO=∠BDO. ∴∠ABD+∠DBO=∠ADB+∠BDO. ∴∠ADO=∠ABO=90°. 又OD為⊙O的半徑,∴AD是半圓O的切線. (2)由(1)知,∠ADO=∠ABO=90°, ∴∠A=360°-∠ADO-∠ABO-∠BOD =180°-∠BOD=∠DOC. ∵AD是半圓O的切線,∴∠ODE=90°. ∴∠ODC+∠CDE=90°. ∵BC是⊙O的直徑,∴∠ODC+∠BDO=90°. ∴∠BDO=∠CDE. ∵∠BDO=∠OBD,∴∠DOC=2∠BDO. ∴∠DOC=2∠CDE. ∴∠A=2∠CDE. 類(lèi)

7、型2 不確定直線與圓是否有交點(diǎn)   直線與圓沒(méi)有已知的公共點(diǎn)時(shí),通?!白鞔怪保C半徑,得切線”.證明垂線段的長(zhǎng)等于半徑常用的方法是利用三角形全等或者利用角平分線上的點(diǎn)到角的兩邊的距離相等. 【例2】 (貴港中考改編)如圖,在△ABC中,AB=AC,O為BC的中點(diǎn),AC與半圓O相切于點(diǎn)D. (1)求證:AB是半圓O所在圓的切線; (2)若∠ABC=60°,AB=12,求半圓O所在圓的半徑. 解:(1)證明:連接OD,OA,作OE⊥AB于點(diǎn)E, ∵AB=AC,O為BC的中點(diǎn), ∴∠CAO=∠BAO. ∵OD⊥AC于點(diǎn)D,OE⊥AB于點(diǎn)E, ∴OD=OE. ∵AB經(jīng)過(guò)圓O半

8、徑的外端, ∴AB是半圓O所在圓的切線. (2)∵AB=AC,∠ABC=60°, ∴△ABC是等邊三角形. ∴BC=AB=12. ∵點(diǎn)O為BC的中點(diǎn),∴BO=6. 由(1)可知∠BOE=30°. 在Rt△OBE中,BE=BO=3, OE==3. ∴半圓O所在圓的半徑為3. 6.如圖,O為正方形ABCD對(duì)角線AC上一點(diǎn),以O(shè)為圓心,OA長(zhǎng)為半徑的⊙O與BC相切于點(diǎn)M,與AB,AD分別相交于點(diǎn)E,F(xiàn).求證:CD與⊙O相切. 證明:連接OM,過(guò)點(diǎn)O作ON⊥CD于點(diǎn)N, ∵⊙O與BC相切于點(diǎn)M, ∴OM⊥BC. ∵正方形ABCD中,AC平分∠BCD, 又∵ON

9、⊥CD,OM⊥BC, ∴OM=ON.又ON為⊙O的半徑, ∴CD與⊙O相切. 7.如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線交BC于點(diǎn)D,E為AB上的一點(diǎn),DE=DC,以D為圓心,DB長(zhǎng)為半徑作⊙D,AB=5,EB=3. (1)求證:AC是⊙D的切線; (2)求線段AC的長(zhǎng). 解:(1)證明:過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F. ∵∠ABC=90°,∴AB⊥BC. ∵AD平分∠BAC,DF⊥AC, ∴BD=DF. ∴點(diǎn)F在⊙D上. ∴AC是⊙D的切線. (2)在Rt△BDE和Rt△FDC中, ∵BD=FD,DE=DC, ∴Rt△BDE≌Rt△FDC(HL). ∴EB=CF. 在Rt△ABD和Rt△AFD中, ∵BD=FD,AD=AD, ∴Rt△ABD≌Rt△AFD(HL). ∴AB=AF. ∴AB+EB=AF+CF,即AB+EB=AC. ∴AC=5+3=8. 7

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!