《2018年八年級數(shù)學下冊 專項綜合全練 一次函數(shù)與方案設(shè)計問題試題 (新版)新人教版》由會員分享,可在線閱讀,更多相關(guān)《2018年八年級數(shù)學下冊 專項綜合全練 一次函數(shù)與方案設(shè)計問題試題 (新版)新人教版(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
一次函數(shù)與方案設(shè)計問題
解答題
1.某校校長暑假將帶領(lǐng)該校市級“三好生”去北京旅游.甲旅行社說:“如果校長買全票一張,則其余學生可享受半價優(yōu)待.”乙旅行社說:“包括校長在內(nèi),全部按全票價的6折(即按全票價的60%)優(yōu)惠.”若全票價為240元.
(1)設(shè)學生數(shù)為x,甲旅行社收費為y甲元,乙旅行社收費為y乙元,分別計算兩家旅行社的收費(建立表達式);
(2)當學生數(shù)是多少時,兩家旅行社的收費一樣?
(3)就學生數(shù)x討論哪家旅行社更優(yōu)惠.
解析 (1)y甲=120x+240,y乙=240·60%(x+1)=144x+144.
(2)根據(jù)題意,得120x+240=144x+144,解
2、得x=4.
答:當學生人數(shù)為4人時,兩家旅行社的收費一樣多.
(3)當y甲>y乙時,由120x+240>144x+144,解得x<4.
當y甲4.
答:當學生人數(shù)少于4人時,乙旅行社更優(yōu)惠;當學生人數(shù)多于4人時,甲旅行社更優(yōu)惠.
2.某童裝廠現(xiàn)有甲種布料38米,乙種布料26米,現(xiàn)計劃用這兩種布料生產(chǎn)L、M兩種型號的童裝共50套,已知做一套L型號的童裝需用甲種布料0.5米,乙種布料1米,可獲利45元;做一套M型號的童裝需用甲種布料0.9米,乙種布料0.2米,可獲利潤30元.設(shè)生產(chǎn)L型號的童裝套數(shù)為x,用這批布料生產(chǎn)這兩種型號的童裝
3、所獲利潤為y(元).
(1)寫出y(元)關(guān)于x(套)的函數(shù)解析式,并求出自變量x的取值范圍;
(2)該廠在生產(chǎn)這批童裝中,當L型號的童裝為多少套時,能使該廠所獲的利潤最大?最大利潤為多少?
解析 (1)根據(jù)題意得y=45x+(50-x)×30,
即y=15x+1 500,
由0.5x+0.9(50-x)≤38,x+0.2(50-x)≤26,
得17.5≤x≤20,
∴y=15x+1 500(17.5≤x≤20,且x為整數(shù)).
(2)由(1)知x應取18、19、20,
∴生產(chǎn)方案:①生產(chǎn)L型號18套,M型號32套;
②生產(chǎn)L型號19套,M型號31套;
③生產(chǎn)L型號20套,M
4、型號30套.
∵y=15x+1 500中,15>0,∴y隨x的增大而增大,
∴當x取20時,y取最大值,
y最大值=15×20+1 500=1 800.
∴該服裝廠在生產(chǎn)這批服裝中,當生產(chǎn)L型號20套,M型號30套時,所獲利潤最大,最大是1 800元.
3.A城有化肥200噸,B城有化肥300噸,現(xiàn)要把化肥運往C、D兩農(nóng)村,如果從A城運往C、D兩地,運費分別為20元/噸與25元/噸;從B城運往C、D兩地,運費分別是15元/噸與22元/噸,現(xiàn)已知C地需要220噸,D地需要280噸.
(1)設(shè)從A城運往C農(nóng)村x噸,請把下表補充完整;
倉庫產(chǎn)地
C
D
總計
A
x噸
5、200噸
B
300噸
總計
220噸
280噸
500噸
(2)若某種調(diào)運方案的運費是10 200元,那么從A、B兩城分別調(diào)運C、D兩農(nóng)村各多少噸?
解析 (1)第一橫行填:(200-x)噸;第二橫行填(220-x)噸,(x+80)噸.
(2)設(shè)調(diào)運總運費為y元,則由已知及(1)得y=20x+(200-x)×25+(220-x)×15+(x+80)×22,即y=2x+10 060,由題知2x+10 060=10 200.解得x=70.
答:從A城運往C農(nóng)村70噸,運往D農(nóng)村130噸,從B城運往C農(nóng)村150噸,運往D農(nóng)村150噸.
4.某校實行學案式教學,需印
6、制若干份教學學案.印刷廠有甲、乙兩種收費方式,除按印數(shù)收取印刷費外,甲種方式還需收取制版費,而乙種不需要.兩種印刷方式的費用y(元)與印刷份數(shù)x(份)之間的函數(shù)關(guān)系如圖19-5-1所示.
圖19-5-1
(1)甲種收費方式的函數(shù)關(guān)系式是 ,乙種收費方式的函數(shù)關(guān)系式是 ;?
(2)該校某年級每次需印制100~450(含100和450)份教學學案,選擇哪種印刷方式較合算?
解析 (1)y=0.1x+6;y=0.12x.
設(shè)表示甲種收費方式的函數(shù)關(guān)系式為y=kx+b(k≠0),由點(0,6)和(100,16)都在該函數(shù)圖象上,得解得所以表示甲種收費方式的函數(shù)關(guān)系式為
7、y=0.1x+6.設(shè)表示乙種收費方式的函數(shù)關(guān)系式為y=k1x(k1≠0),由點(100,12)在該函數(shù)圖象上,得12=100k1,解得k1=0.12,所以表示乙種收費方式的函數(shù)關(guān)系式為y=0.12x.
(2)由0.1x+6>0.12x,得x<300;
由0.1x+6=0.12x,得x=300;
由0.1x+6<0.12x,得x>300.
由此可知:當100≤x<300,即印制100~300(含100,不含300)份教學學案時,選擇乙種方式較合算;
當x=300,即印制300份教學學案時,選擇甲、乙兩種方式都可以;
當300