《2018年秋八年級(jí)數(shù)學(xué)上冊(cè) 第十一章《三角形》11.3 多邊形及其內(nèi)角和 11.3.1 多邊形課時(shí)作業(yè) (新版)新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年秋八年級(jí)數(shù)學(xué)上冊(cè) 第十一章《三角形》11.3 多邊形及其內(nèi)角和 11.3.1 多邊形課時(shí)作業(yè) (新版)新人教版(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
11.3 多邊形及其內(nèi)角和
11.3.1 多邊形
知識(shí)要點(diǎn)基礎(chǔ)練
知識(shí)點(diǎn)1 多邊形及其相關(guān)概念
1.下列說(shuō)法正確的是(B)
A.由一些線段首尾順次相接組成的圖形叫做多邊形
B.多邊形相鄰兩邊組成的角是這個(gè)多邊形的內(nèi)角
C.連接多邊形的兩頂點(diǎn)的線段,叫做多邊形的對(duì)角線
D.四邊形是邊數(shù)最少的多邊形
2.下列各圖中,是凸多邊形的是(D)
知識(shí)點(diǎn)2 多邊形的對(duì)角線
3.若從多邊形的一個(gè)頂點(diǎn)出發(fā),最多可以引9條對(duì)角線,則它是(B)
A.十三邊形 B.十二邊形
C.十一邊形 D.十邊形
4.【教材母題變式】從六邊形的一個(gè)頂點(diǎn)出發(fā),可以畫(huà)出m條對(duì)角線,它們將六邊形分成n
2、個(gè)三角形,則m,n的值分別為(C)
A.4,3 B.3,3 C.3,4 D.4,4
知識(shí)點(diǎn)3 正多邊形
5.下列說(shuō)法正確的是(C)
A.每條邊相等的多邊形是正多邊形
B.每個(gè)內(nèi)角相等的多邊形是正多邊形
C.每條邊相等且每個(gè)內(nèi)角相等的多邊形是正多邊形
D.以上說(shuō)法都正確
6.下列圖形中,是正多邊形的是(C)
A.等腰三角形 B.長(zhǎng)方形
C.正方形 D.五邊都相等的五邊形
綜合能力提升練
7.多邊形的一個(gè)頂點(diǎn)處的所有對(duì)角線把多邊形分成了11個(gè)三角形,則經(jīng)過(guò)這一點(diǎn)的對(duì)角線的條數(shù)是(C)
A.8 B.9 C.10 D.11
【變式拓展】一個(gè)六邊形截去一個(gè)角后,所形成的新多邊
3、形共有 5或9或14 條對(duì)角線.?
8.關(guān)于正多邊形的特征,下列說(shuō)法正確的有?、佗冖邰荨??
①各邊相等;②各個(gè)內(nèi)角相等;③各個(gè)外角相等;④各條對(duì)角線相等;⑤從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線有(n-3)條;⑥從一個(gè)頂點(diǎn)引出的對(duì)角線將n邊形分成面積相等的(n-2)個(gè)三角形.
9.若一個(gè)多邊形內(nèi)角的個(gè)數(shù)是過(guò)它的一個(gè)頂點(diǎn)的對(duì)角線數(shù)的4倍,那么這個(gè)多邊形是 四 邊形.?
10.過(guò)m邊形的一個(gè)頂點(diǎn)有4條對(duì)角線,n邊形沒(méi)有對(duì)角線,p邊形有p條對(duì)角線,則(m-p)n= 8 .?
11.如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第n個(gè)圖形需要黑色棋子的個(gè)數(shù)是 n2+2n .?
4、
12.如圖所示,①中多邊形(邊數(shù)為12)是由正三角形“擴(kuò)展”而來(lái)的,②中多邊形是由正方形“擴(kuò)展”而來(lái)的,…,依此類推,則由正n邊形“擴(kuò)展”而來(lái)的多邊形的邊數(shù)為 n(n+1) .?
13.畫(huà)出下列多邊形的全部對(duì)角線.
解:如圖所示.
14.已知從n邊形的一個(gè)頂點(diǎn)出發(fā)共有4條對(duì)角線,該n邊形的周長(zhǎng)為56,且各邊長(zhǎng)是連續(xù)的自然數(shù),求這個(gè)多邊形的各邊長(zhǎng).
解:依題意有n-3=4,解得n=7,
設(shè)最短邊為x,則
7x+1+2+3+4+5+6=56,
解得x=5.
故這個(gè)多邊形的各邊長(zhǎng)是5,6,7,8,9,10,11.
15.在多邊形邊上或內(nèi)部取一
5、點(diǎn),與多邊形各頂點(diǎn)的連線將多邊形分割成若干個(gè)小三角形,圖1給出了四邊形的具體分割方法,分別將四邊形分割成了2個(gè)、3個(gè)、4個(gè)小三角形.
(1)請(qǐng)你按照上述方法將圖2中的六邊形進(jìn)行分割,并寫(xiě)出每種方法所得到的小三角形的個(gè)數(shù);
(2)當(dāng)多邊形為n邊形時(shí),按照上述方法進(jìn)行分割,寫(xiě)出每種分法所得到的小三角形的個(gè)數(shù).
解:(1)如圖所示.
所分割成的三角形的個(gè)數(shù)分別是4個(gè),5個(gè),6個(gè).
(2)結(jié)合兩個(gè)特殊圖形,可以發(fā)現(xiàn):
第一種分割法把n邊形分割成了(n-2)個(gè)三角形;
第二種分割法把n邊形分割成了(n-1)個(gè)三角形;
第三種分割法把n邊形分割成了n個(gè)三角形.
6、
16.如圖,用釘子把木棒AB,BC和CD連接起來(lái),用橡皮筋把A,D兩端連接起來(lái),設(shè)橡皮筋A(yù)D的長(zhǎng)是x cm.
(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值.
(2)在(1)的條件下要圍成一個(gè)四邊形,你能求出橡皮筋長(zhǎng)x的取值范圍嗎?
解:(1)最大值應(yīng)該是所有其他三條線段的和,即最大值是5+3+11=19(cm);
最小值是用最大的線段的長(zhǎng)減去其他兩條相對(duì)較短的線段的長(zhǎng),即最小值是11-3-5=3(cm).
(2)由(1)中的最大值和最小值可得要圍成一個(gè)四邊形,橡皮筋長(zhǎng)x的取值范圍為3 cm