九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點題型突破 題型一 簡單幾何圖形的證明與計算試題

上傳人:Sc****h 文檔編號:82770252 上傳時間:2022-04-30 格式:DOC 頁數(shù):9 大小:132KB
收藏 版權(quán)申訴 舉報 下載
中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點題型突破 題型一 簡單幾何圖形的證明與計算試題_第1頁
第1頁 / 共9頁
中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點題型突破 題型一 簡單幾何圖形的證明與計算試題_第2頁
第2頁 / 共9頁
中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點題型突破 題型一 簡單幾何圖形的證明與計算試題_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點題型突破 題型一 簡單幾何圖形的證明與計算試題》由會員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點題型突破 題型一 簡單幾何圖形的證明與計算試題(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題二 解答重難點題型突破 題型一 簡單幾何圖形的證明與計算 類型一 特殊四邊形的探究 1.(2017·開封模擬)如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,以邊AC上一點O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點D,并與邊AC相交于另一點F. (1)求證:BD是⊙O的切線; (2)若BC=2,E是半圓上一動點,連接AE、AD、DE. 填空: ①當(dāng)?shù)拈L度是__________時,四邊形ABDE是菱形; ②當(dāng)?shù)拈L度是__________時,△ADE是直角三角形. 2.(2017·商丘模擬)如圖,已知⊙O的半

2、徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,E是BC的中點,AB交⊙O于D點. (1)直接寫出ED和EC的數(shù)量關(guān)系:; (2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由; (3)填空:當(dāng)BC=__________時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是__________. 3.如圖,在菱形ABCD中,∠ABC=60°,BC=5 cm,點E從點A出發(fā)沿射線AD以1 cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2 cm/s的速度運動,設(shè)運動時間為t(s). (1)連接EF,當(dāng)EF經(jīng)過BD邊

3、的中點G時,求證:△DGE≌△BGF; (2)填空: ①當(dāng)t為__________s時,△ACE的面積是△FCE的面積的2倍; ②當(dāng)t為__________s時,四邊形ACFE是菱形. 4.(2017·新鄉(xiāng)模擬)如圖,AC是?ABCD的一條對角線,過AC中點O的直線分別交AD,BC于點E,F(xiàn). (1)求證:AE=CF; (2)連接AF,CE. ①當(dāng)EF和AC滿足條件__________時,四邊形AFCE是菱形; ②若AB=1,BC=2,∠B=60°,則四邊形AFCE為矩形時,EF的長是__________.

4、 類型二 幾何問題的證明與計算 1.(2017·周口模擬)如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點,連接OF并延長交弧AC于點D,過點D作⊙O的切線,交BA的延長線于點E. (1)求證:AC∥DE; (2)連接CD,若OA=AE=2時,求出四邊形ACDE的面積. 2.(2017·湘潭)如圖,在?ABCD中,DE=CE,連接AE并延長交BC的延長線于點F. (1)求證:△ADE≌△FCE; (2)若AB=2BC,∠F=36°.求∠B的度數(shù).

5、 3.(2017·山西)如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D. (1)若AC=4,BC=2,求OE的長. (2)試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由. 4.(2017·杭州)如圖,在正方形ABCD中,點G在對角線BD上(不與點B,D重合),GE⊥DC于點E,GF⊥BC于點F,連接AG. (1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由; (2)若正方形ABCD的邊長為1,∠AGF=105°,求線段BG的

6、長. 題型一 簡單幾何圖形的證明與計算 類型一 特殊四邊形的探究 1.(1)證明:連接OD,如解圖, ∵∠BAC=90°,點D為BC的中點, ∴DB=DA=DC, ∵∠B=60°,∴△ABD為等邊三角形, ∴∠DAB=∠ADB=60°,∠DAC=∠C=30°,而OA=OD, ∴∠ODA=∠OAD=30°, ∴∠ODB=60°+30°=90°, ∴OD⊥BC,又∵OD是⊙O的半徑, ∴BD是⊙O的切線; (2)解:①連接OD、OE,∵△ABD為等邊三角形, ∴AB=BD=AD=CD=, 在Rt△ODC中,OD=CD=1, 當(dāng)DE∥AB時,DE

7、⊥AC,∴AD=AE, ∵∠ADE=∠BAD=60°, ∴△ADE為等邊三角形, ∴AD=AE=DE,∠ADE=60°,∴∠AOE=2∠ADE=120°,∴AB=BD=DE=AE, ∴四邊形ABDE為菱形, 此時,的長度==π, ②當(dāng)∠ADE=90°時,AE為直徑,點E與點F重合,此時的長度==π, 當(dāng)∠DAE=90°時,DE為直徑,∠AOE=2∠ADE=60°,此時的長度==π, 所以當(dāng)?shù)拈L度為π或π時,△ADE是直角三角形. 2.解:(1)連接CD,如解圖, ∵AC是⊙O的直徑,∴∠ADC=90°, ∵E是BC的中點, ∴DE=CE; (2)DE是⊙O的

8、切線.理由如下: 連接OD,如解圖, ∵BC為切線,∴OC⊥BC, ∴∠OCB=90°,即∠2+∠4=90°, ∵OC=OD,ED=EC,∴∠1=∠2,∠3=∠4, ∴∠1+∠3=∠2+∠4=90°,即∠ODE=90°,∴OD⊥DE, ∴DE是⊙O的切線; (3)當(dāng)BC=2時, ∵CA=CB=2,∴△ACB為等腰直角三角形,∴∠B=45°, ∴△BCD為等腰直角三角形,∴DE⊥BC,DE=BC=1, ∵OA=DE=1,AO∥DE,∴四邊形AOED是平行四邊形; ∵OD=OC=CE=DE=1,∠OCE=90°, ∴四邊形OCED為正方形. 3.(1)證明:∵G為B

9、D的中點, ∴BG=DG, ∵四邊形ABCD是菱形, ∴AD∥BC, ∴∠EDG=∠FBG,∠GED=∠GFB, ∴△DGE≌△BGF(AAS); (2)解:①分兩種情況考慮:當(dāng)點F在線段BC上時,如解圖①,連接AC,EC,設(shè)菱形ABCD邊BC上的高為h,由題意知S△ACE=AE·h,S△FCE=CF·h,∵△ACE的面積是△FCE的面積的2倍,∴AE·h=2×CF·h,∴AE=2CF,∵AE=t,CF=5-2t,∴t=2(5-2t),解得t=2;當(dāng)點F在線段BC的延長線上時,如解圖②,連接AC,EC,AE=t,CF=2t-5,∵△ACE的面積是△FCE的面積的2倍,∴AE=2CF

10、,∴t=2(2t-5),解得t=; ②∵四邊形ABCD為菱形,∴AB=BC,∵∠ABC=60°,∴△ABC為等邊三角形,∴AC=AB=5,當(dāng)四邊形ACFE為菱形時,則AE=AC=CF=5,即t=5. 4.(1)證明:∵AD∥BC,∴∠EAO=∠FCO. ∵O是AC的中點,∴OA=OC, 在△AOE和△COF中, , ∴△AOE≌△COF(ASA). ∴AE=CF. (2)解:①當(dāng)EF和AC滿足條件EF⊥AC時,四邊形AFCE是菱形; 如解圖所示, ∵AE∥CF,AE=CF, ∴四邊形AFCE是平行四邊形, 又∵EF⊥AC,∴四邊形AFCE是菱形; ②若四

11、邊形AFCE為矩形, 則EF=AC,∠AFB=∠AFC=90°, ∵AB=1,BC=2,∠B=60°,∴∠BAF=30°, ∴BF=AB=, ∴AF=BF=,CF=2-=, ∴AC===, ∴EF=. 類型二 幾何問題的證明與計算 1.證明:(1)∵F為弦AC的中點, ∴AF=CF,∴OD⊥AC, ∵DE切⊙O于點D,∴OD⊥DE, ∴AC∥DE; (2)∵AC∥DE,且OA=AE, ∴F為OD的中點,即OF=FD, 又∵AF=CF, ∠AFO=∠CFD, ∴△AFO≌△CFD(SAS),∴S△AFO=S△CFD,∴S四邊形ACDE=S△ODE. 在

12、Rt△ODE中,OD=OA=AE=2, ∴OE=4, ∴DE===2, ∴S四邊形ACDE=S△ODE=·OD·DE=×2×2=2. 2.(1)證明:∵四邊形ABCD是平行四邊形, ∴AD∥BC,AD=BC, ∴∠D=∠ECF, 在△ADE和△FCE中, , ∴△ADE≌△FCE(ASA); (2)解:∵△ADE≌△FCE,∴AD=FC, ∵AD=BC,AB=2BC,∴AB=FB, ∴∠BAF=∠F=36°,∴∠B=180°-2×36°=108°. 3.解:(1)∵AB為⊙O的直徑,∴∠ACB=90°, 在Rt△ABC中,由勾股定理得:AB===2,

13、∴OA=AB=, ∵OD⊥AB, ∴∠AOE=∠ACB=90°, 又∵∠A=∠A, ∴△AOE∽△ACB, ∴=,即=, 解得:OE=; (2) ∠CDE=2∠A,理由如下:連接OC,如解圖所示: ∵OA=OC,∴∠1=∠A, ∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°, ∴∠2+∠CDE=90°, ∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE, ∵∠3=∠A+∠1=2∠A, ∴∠CDE=2∠A. 4.解:(1)結(jié)論:AG2=GE2+GF2. 理由:如解圖,連接CG. ∵四邊形ABCD是正方形,∴A、C關(guān)于對角線BD對稱, ∵點G在BD上,∴GA=GC, ∵GE⊥DC于點E,GF⊥BC于點F, ∴∠GEC=∠ECF=∠CFG=90°, ∴四邊形EGFC是矩形,∴CF=GE, 在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2; (2)如解圖,作AH⊥BG于點H, 由題意得∠AGB=60°,∠ABH=45°,∴△ABH是等腰直角三角形, ∵AB=1,∴AH=BH=,HG=,∴BG=. 9

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!