大板錠抓具設(shè)計(jì)【含12張CAD圖紙】
大板錠抓具設(shè)計(jì)【含12張CAD圖紙】,含12張CAD圖紙,大板錠抓具,設(shè)計(jì),12,CAD,圖紙
畢業(yè)設(shè)計(jì)(論文)
英語翻譯
題目名稱: 大板錠抓具
院系名稱:
班 級:
學(xué) 號(hào):
學(xué)生姓名:
指導(dǎo)教師:
年 3月
機(jī)械加工介紹
摘要:
車床主要是為了車外圓、車端面和鏜孔等項(xiàng)工作而設(shè)計(jì)的機(jī)床。車床的多功能性可以使工件在一次安裝中完成幾種加工。因此,在生產(chǎn)中使用的各種車床比任何其他種類的機(jī)床都多。本文主要介紹的用途和種類,及數(shù)字技術(shù)在機(jī)床上的發(fā)展
關(guān)鍵字:車床 切削 零件 數(shù)字控制 機(jī)床發(fā)展
1.車床
車床主要是為了進(jìn)行車外圓、車端面和鏜孔等項(xiàng)工作而設(shè)計(jì)的機(jī)床。車削很少在其他種類的機(jī)床上進(jìn)行,而且任何一種其他機(jī)床都不能像車床那樣方便地進(jìn)行車削加工。由于車床還可以用來鉆孔和鉸孔,車床的多功能性可以使工件在一次安裝中完成幾種加工。因此,在生產(chǎn)中使用的各種車床比任何其他種類的機(jī)床都多。
車床的基本部件有:床身、主軸箱組件、尾座組件、溜板組件、絲杠和光杠。
床身是車床的基礎(chǔ)件。它能常是由經(jīng)過充分正火或時(shí)效處理的灰鑄鐵或者球墨鐵制成。它是一個(gè)堅(jiān)固的剛性框架,所有其他基本部件都安裝在床身上。通常在床身上有內(nèi)外兩組平行的導(dǎo)軌。有些制造廠對全部四條導(dǎo)軌都采用導(dǎo)軌尖朝上的三角形導(dǎo)軌(即山形導(dǎo)軌),而有的制造廠則在一組中或者兩組中都采用一個(gè)三角形導(dǎo)軌和一個(gè)矩形導(dǎo)軌。導(dǎo)軌要經(jīng)過精密加工以保證其直線度精度。為了抵抗磨損和擦傷,大多數(shù)現(xiàn)代機(jī)床的導(dǎo)軌是經(jīng)過表面淬硬的,但是在操作時(shí)還應(yīng)該小心,以避免損傷導(dǎo)軌。導(dǎo)軌上的任何誤差,常常意味著整個(gè)機(jī)床的精度遭到破壞。
主軸箱安裝在內(nèi)側(cè)導(dǎo)軌的固定位置上,一般在床身的左端。它提供動(dòng)力,并可使工件在各種速度下回轉(zhuǎn)。它基本上由一個(gè)安裝在精密軸承中的空心主軸和一系列變速齒輪(類似于卡車變速箱)所組成。通過變速齒輪,主軸可以在許多種轉(zhuǎn)速下旋轉(zhuǎn)。大多數(shù)車床有8~12種轉(zhuǎn)速,一般按等比級數(shù)排列。而且在現(xiàn)代機(jī)床上只需扳動(dòng)2~4個(gè)手柄,就能得到全部轉(zhuǎn)速。一種正在不斷增長的趨勢是通過電氣的或者機(jī)械的裝置進(jìn)行無級變速。
由于機(jī)床的精度在很大程度上取決于主軸,因此,主軸的結(jié)構(gòu)尺寸較大,通常安裝在預(yù)緊后的重型圓錐滾子軸承或球軸承中。主軸中有一個(gè)貫穿全長的通孔,長棒料可以通過該孔送料。主軸孔的大小是車床的一個(gè)重要尺寸,因此當(dāng)工件必須通過主軸孔供料時(shí),它確定了能夠加工的棒料毛坯的最大尺寸。
尾座組件主要由三部分組成。底板與床身的內(nèi)側(cè)導(dǎo)軌配合,并可以在導(dǎo)軌上作縱向移動(dòng)。底板上有一個(gè)可以使整個(gè)尾座組件夾緊在任意位置上的裝置。尾座體安裝在底板上,可以沿某種類型的鍵槽在底板上橫向移動(dòng),使尾座能與主軸箱中的主軸對正。尾座的第三個(gè)組成部分是尾座套筒。它是一個(gè)直徑通常大約在51~76mm(2~3英寸)之間的鋼制空心圓柱體。通過手輪和螺桿,尾座套筒可以在尾座體中縱向移入和移出幾個(gè)英寸。
車床的規(guī)格用兩個(gè)尺寸表示。第一個(gè)稱為車床的床面上最大加工直徑。這是在車床上能夠旋轉(zhuǎn)的工件的最大直徑。它大約是兩頂尖連線與導(dǎo)軌上最近點(diǎn)之間距離的兩倍。第二個(gè)規(guī)格尺寸是兩頂尖之間的最大距離。車床床面上最大加工直徑表示在車床上能夠車削的最大工件直徑,而兩頂尖之間的最大距離則表示在兩個(gè)頂尖之間能夠安裝的工件的最大長度。
普通車床是生產(chǎn)中最經(jīng)常使用的車床種類。它們是具有前面所敘的所有那些部件的重載機(jī)床,并且除了小刀架之外,全部刀具的運(yùn)動(dòng)都有機(jī)動(dòng)進(jìn)給。它們的規(guī)格通常是:車床床面上最大加工直徑為305~610mm(12~24英寸);但是,床面上最大加工直徑達(dá)到1270mm(50英寸)和兩頂尖之間距離達(dá)到3658mm的車床也并不少見。這些車床大部分都有切屑盤和一個(gè)安裝在內(nèi)部的冷卻液循環(huán)系統(tǒng)。小型的普通車床—車床床面最大加工直徑一般不超過330mm(13英寸)--被設(shè)計(jì)成臺(tái)式車床,其床身安裝在工作臺(tái)或柜子上。
雖然普通車床有很多用途,是很有用的機(jī)床,但是更換和調(diào)整刀具以及測量工件花費(fèi)很多時(shí)間,所以它們不適合在大量生產(chǎn)中應(yīng)用。通常,它們的實(shí)際加工時(shí)間少于其總加工時(shí)間的30%。此外,需要技術(shù)熟練的工人來操作普通車床,這種工人的工資高而且很難雇到。然而,操作工人的大部分時(shí)間卻花費(fèi)在簡單的重復(fù)調(diào)整和觀察切屑過程上。因此,為了減少或者完全不雇用這類熟練工人,六角車床、螺紋加工車床和其他類型的半自動(dòng)和自動(dòng)車床已經(jīng)很好地研制出來,并已經(jīng)在生產(chǎn)中得到廣泛應(yīng)用。
2.數(shù)字控制
先進(jìn)制造技術(shù)中的一個(gè)基本的概念是數(shù)字控制(NC)。在數(shù)控技術(shù)出現(xiàn)之前,所有的機(jī)床都是由人工操縱和控制的。在與人工控制的機(jī)床有關(guān)的很多局限性中,操作者的技能大概是最突出的問題。采用人工控制是,產(chǎn)品的質(zhì)量直接與操作者的技能有關(guān)。數(shù)字控制代表了從人工控制機(jī)床走出來的第一步。
數(shù)字控制意味著采用預(yù)先錄制的、存儲(chǔ)的符號(hào)指令來控制機(jī)床和其他制造系統(tǒng)。一個(gè)數(shù)控技師的工作不是去操縱機(jī)床,而是編寫能夠發(fā)出機(jī)床操縱指令的程序。對于一臺(tái)數(shù)控機(jī)床,其上必須安有一個(gè)被稱為閱讀機(jī)的界面裝置,用來接受和解譯出編程指令。
發(fā)展數(shù)控技術(shù)是為了克服人類操作者的局限性,而且它確實(shí)完成了這項(xiàng)工作。數(shù)字控制的機(jī)器比人工操縱的機(jī)器精度更高、生產(chǎn)出零件的一致性更好、生產(chǎn)速度更快、而且長期的工藝裝備成本更低。數(shù)控技術(shù)的發(fā)展導(dǎo)致了制造工藝中其他幾項(xiàng)新發(fā)明的產(chǎn)生:
? 電火花加工技術(shù)、激光切割、電子束焊接
數(shù)字控制還使得機(jī)床比它們采用有人工操的前輩們的用途更為廣泛。
一臺(tái)數(shù)控機(jī)床可以自動(dòng)生產(chǎn)很多類的零件,每一個(gè)零件都可以有不同的和復(fù)雜的加工過程。數(shù)控可以使生產(chǎn)廠家承擔(dān)那些對于采用人工控制的機(jī)床和工藝來說,在經(jīng)濟(jì)上是不劃算的產(chǎn)品生產(chǎn)任務(wù)。
同許多先進(jìn)技術(shù)一樣,數(shù)控誕生于麻省理工學(xué)院的實(shí)驗(yàn)室中。數(shù)控這個(gè)概念是50年代初在美國空軍的資助下提出來的。在其最初的價(jià)段,數(shù)控機(jī)床可以經(jīng)濟(jì)和有效地進(jìn)行直線切割。
然而,曲線軌跡成為機(jī)床加工的一個(gè)問題,在編程時(shí)應(yīng)該采用一系列的水平與豎直的臺(tái)階來生成曲線。構(gòu)成臺(tái)階的每一個(gè)線段越短,曲線就越光滑。臺(tái)階中的每一個(gè)線段都必須經(jīng)過計(jì)算。
在這個(gè)問題促使下,于1959年誕生了自動(dòng)編程工具(APT)語言。這是一個(gè)專門適用于數(shù)控的編程語言,使用類似于英語的語句來定義零件的幾何形狀,描述切削刀具的形狀和規(guī)定必要的運(yùn)動(dòng)。APT語言的研究和發(fā)展是在數(shù)控技術(shù)進(jìn)一步發(fā)展過程中的一大進(jìn)步。最初的數(shù)控系統(tǒng)下
今天應(yīng)用的數(shù)控系統(tǒng)是有很大差別的。在那時(shí)的機(jī)床中,只有硬線邏輯電路。指令程序?qū)懺诖┛准垘希ㄋ髞肀凰芰蠋〈?,采用帶閱讀機(jī)將寫在紙帶或磁帶上的指令給機(jī)器翻譯出來。所有這些共同構(gòu)成了機(jī)床數(shù)字控制方面的巨大進(jìn)步。然而,在數(shù)控發(fā)展的這個(gè)階段中還存在著許多問題。
一個(gè)主要問題是穿孔紙帶的易損壞性。在機(jī)械加工過程中,載有編程指令信息的紙帶斷裂和被撕壞是常見的事情。在機(jī)床上每加工一個(gè)零件,都需要將載有編程指令的紙帶放入閱讀機(jī)中重新運(yùn)行一次。因此,這個(gè)問題變得很嚴(yán)重。如果需要制造100個(gè)某種零件,則應(yīng)該將紙帶分別通過閱讀機(jī)100次。易損壞的紙帶顯然不能承受嚴(yán)配的車間環(huán)境和這種重復(fù)使用。
這就導(dǎo)致了一種專門的塑料磁帶的研制。在紙帶上通過采用一系列的小孔來載有編程指令,而在塑料帶上通過采用一系列的磁點(diǎn)瞇載有編程指令。塑料帶的強(qiáng)度比紙帶的強(qiáng)度要高很多,這就可以解決常見的撕壞和斷裂問題。然而,它仍然存在著兩個(gè)問題。
其中最重要的一個(gè)問題是,對輸入到帶中指令進(jìn)行修改是非常困難的,或者是根本不可能的。即使對指令程序進(jìn)行最微小的調(diào)整,也必須中斷加工,制作一條新帶。而且?guī)ㄟ^閱讀機(jī)的次數(shù)還必須與需要加工的零件的個(gè)數(shù)相同。幸運(yùn)的是,計(jì)算機(jī)技術(shù)的實(shí)際應(yīng)用很快解決了數(shù)控技術(shù)中與穿孔紙帶和塑料帶有關(guān)的問題。
在形成了直接數(shù)字控制(DNC)這個(gè)概念之后,可以不再采用紙帶或塑料帶作為編程指令的載體,這樣就解決了與之有關(guān)的問題。在直接數(shù)字控制中,幾臺(tái)機(jī)床通過數(shù)據(jù)傳輸線路聯(lián)接到一臺(tái)主計(jì)算機(jī)上。操縱這些機(jī)床所需要的程序都存儲(chǔ)在這臺(tái)主計(jì)算機(jī)中。當(dāng)需要時(shí),通過數(shù)據(jù)傳輸線路提供給每臺(tái)機(jī)床。直接數(shù)字控制是在穿孔紙帶和塑料帶基礎(chǔ)上的一大進(jìn)步。然而,它敢有著同其他信賴于主計(jì)算機(jī)技術(shù)一樣的局限性。當(dāng)主計(jì)算機(jī)出現(xiàn)故障時(shí),由其控制的所有機(jī)床都將停止工作。這個(gè)問題促使了計(jì)算機(jī)數(shù)字控制技術(shù)的產(chǎn)生。
微處理器的發(fā)展為可編程邏輯控制器和微型計(jì)算機(jī)的發(fā)展做好了準(zhǔn)備。這兩種技術(shù)為計(jì)算機(jī)數(shù)控(CNC)的發(fā)打下了基礎(chǔ)。采用CNC技術(shù)后,每臺(tái)機(jī)床上都有一個(gè)可編程邏輯控制器或者微機(jī)對其進(jìn)行數(shù)字控制。這可以使得程序被輸入和存儲(chǔ)在每臺(tái)機(jī)床內(nèi)部。它還可以在機(jī)床以外編制程序,并將其下載到每臺(tái)機(jī)床中。計(jì)算機(jī)數(shù)控解決了主計(jì)算機(jī)發(fā)生故障所帶來的問題,但是它產(chǎn)生了另一個(gè)被稱為數(shù)據(jù)管理的問題。同一個(gè)程序可能要分別裝入十個(gè)相互之間沒有通訊聯(lián)系的微機(jī)中。這個(gè)問題目前正在解決之中,它是通過采用局部區(qū)域網(wǎng)絡(luò)將各個(gè)微機(jī)聯(lián)接起來,以得于更好地進(jìn)行數(shù)據(jù)管理。
本文摘自:
《Integration and Automation of Manufacturing Systems》by Hugh Jack
The instruction of machining
1 Lathes
Lathes are machine tools designed primarily to do turning, facing and boring, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool.
The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod.
The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, They are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed.
The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds . Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives.
Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle.
The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location, An upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76mm(2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw.
The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, The second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers.
Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up to 3658mm(12 feet) are not uncommon. Most have chip pans and a built-in coolant circulating system. Smaller engine lathes-with swings usually not over 330 mm (13 inches ) –also are available in bench type, designed for the bed to be mounted on a bench on a bench or cabinet.
Although engine lathes are versatile and very useful, because of the time required for changing and setting tools and for making measurements on the work piece, thy are not suitable for quantity production. Often the actual chip-production tine is less than 30% of the total cycle time. In addition, a skilled machinist is required for all the operations, and such persons are costly and often in short supply. However, much of the operator’s time is consumed by simple, repetitious adjustments and in watching chips being made. Consequently, to reduce or eliminate the amount of skilled labor that is required, turret lathes, screw machines, and other types of semiautomatic and automatic lathes have been highly developed and are widely used in manufacturing.
2 Numerical Control
One of the most fundamental concepts in the area of advanced manufacturing technologies is numerical control (NC). Prior to the advent of NC, all machine tools ere manually operated and controlled. Among the many limitations associated with manual control machine tools, perhaps none is more prominent than the limitation of operator skills. With manual control, the quality of the product is directly related to and limited to the skills of the operator. Numerical control represents the first major step away from human control of machine tools.?
Numerical control means the control of machine tools and other manufacturing systems through the use of prerecorded, written symbolic instructions. Rather than operating a machine tool, an NC technician writes a program that issues operational instructions to the machine tool. For a machine tool to be numerically controlled, it must be interfaced with a device for accepting and decoding the programmed instructions, known as a reader.
Numerical control was developed to overcome the limitation of human operators, and it has done so. Numerical control machines are more accurate than manually operated machines, they can produce parts more uniformly, they are faster, and the long-run tooling costs are lower. The development of NC led to the development of several other innovations in manufacturing technology:
Electrical discharge machining,Laser cutting,Electron beam welding.
Numerical control has also made machine tools more versatile than their manually operated predecessors. An NC machine tool can automatically produce a wide of parts, each involving an assortment of widely varied and complex machining processes. Numerical control has allowed manufacturers to undertake the production of products that would not have been feasible from an economic perspective using manually controlled machine tolls and processes.
Like so many advanced technologies, NC was born in the laboratories of the Massachusetts Institute of Technology. The concept of NC was developed in the early 1950s with funding provided by the U.S. Air Force. In its earliest stages, NC machines were able to made straight cuts efficiently and effectively.
However, curved paths were a problem because the machine tool had to be programmed to undertake a series of horizontal and vertical steps to produce a curve. The shorter the straight lines making up the steps, the smoother is the curve, Each line segment in the steps had to be calculated.
This problem led to the development in 1959 of the Automatically Programmed Tools (APT) language. This is a special programming language for NC that uses statements similar to English language to define the part geometry, describe the cutting tool configuration, and specify the necessary motions. The development of the APT language was a major step forward in the fur ther development from those used today. The machines had hardwired logic circuits. The instructional programs were written on punched paper, which was later to be replaced by magnetic plastic tape. A tape reader was used to interpret the instructions written on the tape for the machine. Together, all of this represented a giant step forward in the control of machine tools. However, there were a number of problems with NC at this point in its development.
A major problem was the fragility of the punched paper tape medium. It was common for the paper tape containing the programmed instructions to break or tear during a machining process. This problem was exacerbated by the fact that each successive time a part was produced on a machine tool, the paper tape carrying the programmed instructions had to be rerun through the reader. If it was necessary to produce 100 copies of a given part, it was also necessary to run the paper tape through the reader 100 separate tines. Fragile paper tapes simply could not withstand the rigors of a shop floor environment and this kind of repeated use.
This led to the development of a special magnetic plastic tape. Whereas the paper carried the programmed instructions as a series of holes punched in the tape, the plastic tape carried the instructions as a series of magnetic dots. The plastic tape was much stronger than the paper tape, which solved the problem of frequent tearing and breakage. However, it still left two other problems.
The most important of these was that it was difficult or impossible to change the instructions entered on the tape. To made even the most minor adjustments in a program of instructions, it was necessary to interrupt machining operations and make a new tape. It was also still necessary to run the tape through the reader as many times as there were parts to be produced. Fortunately, computer technology became a reality and soon solved the problems of NC associated with punched paper and plastic tape.
The development of a concept known as direct numerical control (DNC) solved the paper and plastic tape problems associated with numerical control by simply eliminating tape as the medium for carrying the programmed instructions. In direct numerical control, machine tools are tied, via a data transmission link, to a host computer. Programs for operating the machine tools are stored in the host computer and fed to the machine tool an needed via the data transmission linkage. Direct numerical control represented a major step forward over punched tape and plastic tape. However, it is subject to the same limitations as all technologies that depend on a host computer. When the host computer goes down, the machine tools also experience downtime. This problem led to the development of computer numerical control.
From:
《Integration and Automation of Manufacturing Systems》by Hugh Jack
畢業(yè)實(shí)習(xí)報(bào)告
題目名稱:大板錠抓具設(shè)計(jì)
院系名稱:
班 級:
學(xué) 號(hào):
學(xué)生姓名:
指導(dǎo)教師:
目 錄
1 實(shí)習(xí)目的 - 1 -
2 公司簡介 - 1 -
3 實(shí)習(xí)內(nèi)容 - 4 -
4 現(xiàn)場參觀及收集資料 - 4 -
5 實(shí)習(xí)體會(huì) - 6 -
6 參考資料 - 7 -
1 實(shí)習(xí)目的
本組在中國鋁業(yè)股份有限公司河南分公司下屬分公司實(shí)習(xí),由于畢業(yè)設(shè)計(jì)的題目材料均來自于該公司,其中我所選的題目是大板錠抓具設(shè)計(jì)即鋁板抓具。是用于鑄造鋁廠抓取鋁板的抓具。該系列抓具加緊力大自動(dòng)化程度高,使用安全可靠。由王老師帶著本組成員進(jìn)行了此次畢業(yè)實(shí)習(xí)。
2 公司簡介
該公司是境外上市公司中國鋁業(yè)股份有限公司河南分公司的二級單位,是從事設(shè)備制造和備件生產(chǎn),并通過IS09000質(zhì)量體系認(rèn)證、取得BRl級壓力容器制造資質(zhì)的生產(chǎn)企業(yè),具有年產(chǎn)綜合機(jī)械產(chǎn)品7000噸、氧氣26萬瓶及年創(chuàng)設(shè)備安裝、大修產(chǎn)值1300萬元能力的中型設(shè)備與備件制造廠。擁有固定資產(chǎn)7000余萬元,大型、數(shù)控及精密等各類設(shè)備逾470臺(tái)。有表面沉積和激光加工中心,可承制冶金、礦山、建材、有色、化工等行業(yè)所需成套、大型、精密設(shè)備以及各種毛坯、機(jī)械零配件。80年代之前曾長年承擔(dān)國家軍工精密零部件制造的機(jī)械制造公司,在市場經(jīng)濟(jì)的大潮中,面對入世,對標(biāo)國際,與時(shí)俱進(jìn),創(chuàng)新發(fā)展,形成了以市場為導(dǎo)向、以質(zhì)量為中心、以產(chǎn)品開發(fā)為龍頭的產(chǎn)供銷一體化生產(chǎn)經(jīng)營新格局。公司技術(shù)力量雄厚,擁有教授級高工1人,高級工程師15人,工程師22人。98年以來,公司走企業(yè)與大專院校、科研院所聯(lián)合開發(fā)高新技術(shù)之路,先后研制的貝氏體磨球、高效耐磨固液泵、無螺栓磨機(jī)襯板、鋁電解陽極提升機(jī)等通過省部級鑒定,分別達(dá)到國內(nèi)和國際領(lǐng)先水平。新型無螺栓襯板,是該公司研制開發(fā)的高技術(shù)產(chǎn)品,獲中國有色科技三等獎(jiǎng)。該產(chǎn)品具有運(yùn)轉(zhuǎn)效率高、維護(hù)工作量小、不漏料的特點(diǎn),使用壽命是高錳鋼襯板的兩倍。此項(xiàng)技術(shù)處于國內(nèi)領(lǐng)先水平,是球磨機(jī)高錳鋼襯板的更新?lián)Q代產(chǎn)品。高效耐磨固液泵,獲中國有色科技二等獎(jiǎng)。該產(chǎn)品具有節(jié)能、耐磨、運(yùn)行平穩(wěn)、低噪聲等優(yōu)點(diǎn),產(chǎn)品性能達(dá)到90年代初期國際領(lǐng)先水平,為"九五"國家科技成果重點(diǎn)推廣項(xiàng)目。
鋁電解行業(yè)設(shè)備主要有鋁錠連續(xù)鑄造機(jī)、真空鋁水抬包、鋁導(dǎo)桿校直機(jī)、陽極(母線)提升裝置等。該公司生產(chǎn)的不同噸位、多種規(guī)格、兩點(diǎn)及多點(diǎn)陽極提升機(jī),適用于鋁電解生產(chǎn)的各種槽型,是冶金工業(yè)預(yù)焙電解槽傳動(dòng)系統(tǒng)中的重要設(shè)備之一。該裝置能承受巨大負(fù)荷,操作先進(jìn)、升降穩(wěn)定,也可作為機(jī)車、大型車輛、船舶的制造、修理升降裝置。20kg鋁綻連續(xù)生產(chǎn)機(jī)組用于電解鋁鑄錠工序的鋁錠鑄造、堆裝,具有連續(xù)高效的工作特點(diǎn)。該設(shè)備技術(shù)先進(jìn)、結(jié)構(gòu)緊湊、操作方便、動(dòng)作可靠,同時(shí)無污染、噪聲小,改善了工作環(huán)境。碳素行業(yè)設(shè)備主要有單工位振動(dòng)成型機(jī)、煅燒爐設(shè)備、混捏鍋等。新型碳塊成型機(jī),獲鄭州市技術(shù)進(jìn)步一等獎(jiǎng)?,F(xiàn)己制作12臺(tái),分別在蘭州、焦作、重慶、山東等地安裝使用,受到用戶高度贊揚(yáng)。該公司是鄭州市"文明單位標(biāo)兵"和市工商局"重合同守信用企業(yè)",多年來恪守"售后服務(wù)十項(xiàng)承諾",力行"快速反應(yīng),馬上行動(dòng)"的工作作風(fēng),竭誠為用戶提供設(shè)計(jì)、制作、安裝、調(diào)試、技術(shù)指導(dǎo)、維修、貨運(yùn)等的服務(wù)。
3 實(shí)習(xí)內(nèi)容
此次實(shí)習(xí)由公司技術(shù)科的施科長及其工作人員帶領(lǐng)我們現(xiàn)場參觀,就各自所設(shè)計(jì)的題目收集資料現(xiàn)場觀察。
4 現(xiàn)場參觀及收集資料
(1)始建于1958年的機(jī)械制造公司,位于僅距我國交通樞紐鄭州市37公里的"中國鋁都"上街區(qū),其地理位置優(yōu)越,交通便利。隴海鐵路、鄭汴洛高速公路、310國道在這里并行而過,并均有專線進(jìn)廠。
為了更加直觀的了解所設(shè)計(jì)的相關(guān)題目,由工程師帶領(lǐng)我們參觀了生產(chǎn)第一線。該廠的產(chǎn)品特點(diǎn)為單件小批生產(chǎn)。根據(jù)收集顧客信息(內(nèi)部顧客及相關(guān)外部顧客)的情況,對顧客的要求進(jìn)行設(shè)計(jì),對國外引進(jìn)設(shè)備的改型設(shè)計(jì),制造安裝和售后服務(wù)。公司設(shè)有營銷部、技術(shù)科、生產(chǎn)車間、大修車間、鉚焊車間、金工
圖1 圖2
車間等。該企業(yè)有三米立式銑床三米滾齒機(jī)十二米液壓刨邊機(jī)三百噸單缸壓力機(jī)還有最大切削直徑達(dá)五米的落地車床和深九米的井式爐等。在現(xiàn)場看到的很多機(jī)器都是該公司根據(jù)自己和顧客的需要設(shè)計(jì)和研發(fā)出來的,是一家冶金設(shè)備的大型企業(yè),能滿足顧客的各種不同需要。
(2)在生產(chǎn)現(xiàn)場看到了我所要設(shè)計(jì)的大板錠抓具,如圖1,2。對抓具來說最重要的性能就是安全可靠,我所見到的大板錠抓具一側(cè)有掛鉤設(shè)計(jì),工程師介紹講解說掛鉤是為了保證抓具在放下大板錠升起后有一定的張口尺寸方便再次使用。工程師介紹此抓具是為大板錠等鋁合金產(chǎn)品專門設(shè)計(jì)制造的,利用杠桿原理設(shè)計(jì)抓具的關(guān)鍵是四個(gè)連桿的受力情況,與我以前想象不同的就是這四個(gè)桿的長度和形狀都是不同的,設(shè)計(jì)掛鉤是一方面原因,受力大小也是要謹(jǐn)慎考慮的方面,保證抓具能抓起的重量并安全可靠,其自動(dòng)化程度也較高。通過對實(shí)物的了解,對設(shè)計(jì)題目有了深刻的認(rèn)識(shí),根據(jù)最大載重量來設(shè)計(jì)四連桿的長度和所選材料等。
圖3 圖4
工程師帶著大家參觀了每一個(gè)車間,了解了大體情況,并耐心為我們講解熱心回答我們提出的各種問題。工廠車間里的工作是辛苦的,但只有積累了基本的生產(chǎn)經(jīng)驗(yàn)才有可能設(shè)計(jì)出更好的產(chǎn)品。機(jī)械是嚴(yán)謹(jǐn)?shù)牟蝗菰S有半點(diǎn)的馬虎,稍不留神就會(huì)造成巨大的損失。
5 實(shí)習(xí)體會(huì)
這次實(shí)習(xí)對畢業(yè)設(shè)計(jì)來說是十分必要的,在參觀過程中將實(shí)物轉(zhuǎn)換為圖紙,其中看不明白的地方及時(shí)向工程師和老師請教,使得這次實(shí)習(xí)能對我的畢業(yè)設(shè)計(jì)有很大的幫助。從實(shí)習(xí)中也看到了自己的很多不足,以前書本上的東西已經(jīng)不能滿足設(shè)計(jì)的需要,設(shè)計(jì)產(chǎn)品要從實(shí)際出發(fā)使其能滿足生產(chǎn)等各個(gè)方面的要求。
很快就要踏上社會(huì)工作了,就象王老師說的那樣不能眼高手低,將最基本的知識(shí)掌握牢固才能在更高的層次上發(fā)展?,F(xiàn)在就要仔細(xì)復(fù)習(xí)所學(xué)過的東西才能順利完成畢業(yè)設(shè)計(jì)為將來更好的工作打下基礎(chǔ)。
6 參考資料
1、聯(lián)合編寫組.機(jī)械零件設(shè)計(jì)手冊[S].北京:機(jī)械工業(yè)出版社, 1987.9.
2、成大先.機(jī)械設(shè)計(jì)手冊(單行本):常用設(shè)計(jì)資料[S].北京:化學(xué)工業(yè)出版社,2004.1.
3、成大先.機(jī)械設(shè)計(jì)手冊(單行本):機(jī)械傳動(dòng)[S].北京:化學(xué)工業(yè)出版社,2004.1.
4、路甬祥.液壓氣動(dòng)技術(shù)手冊[S].北京:機(jī)械工業(yè)出版社,2004.5
5、汪啟明等.基于單片機(jī)控制的液壓泵站設(shè)計(jì)研究[J].制造業(yè)自動(dòng)化2003年06期.
6、張利平.液壓控制系統(tǒng)及設(shè)計(jì)[S].北京:化學(xué)工業(yè)出版社,2006.6.
7、趙則祥.公差配合與質(zhì)量控制[M].開封:河南大學(xué)出版社。1997
7
收藏