《(陜西專(zhuān)用)2019中考數(shù)學(xué)總復(fù)習(xí) 第1部分 教材同步復(fù)習(xí) 第四章 三角形 課時(shí)17 相似三角形及其應(yīng)用真題精練》由會(huì)員分享,可在線閱讀,更多相關(guān)《(陜西專(zhuān)用)2019中考數(shù)學(xué)總復(fù)習(xí) 第1部分 教材同步復(fù)習(xí) 第四章 三角形 課時(shí)17 相似三角形及其應(yīng)用真題精練(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第一部分 第四章 課時(shí)17
1.(2018·陜西)周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量家門(mén)前小河的寬.測(cè)量時(shí),他們選擇了河對(duì)岸岸邊的一棵大樹(shù),將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長(zhǎng)線上選擇點(diǎn)D,豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C,A共線.
已知:CB⊥AD,ED⊥AD,測(cè)得BC=1 m,DE=1.5 m,BD=8.5 m.測(cè)量示意圖如圖所示.請(qǐng)根據(jù)相關(guān)測(cè)量信息,求河寬AB.
第1題圖
解:∵CB⊥AD,ED⊥AD,∴BC∥DE,
∴△ABC∽△ADE,
∴=,∴=,
解得AB=17.
檢驗(yàn):當(dāng)AB=17時(shí)
2、,1.5(AB+8.5)≠0,所以AB=17是分式方程的解.
答:河寬AB為17米.
2.(2016·陜西)某市為了打造森林城市,樹(shù)立城市新地標(biāo),實(shí)現(xiàn)綠色、共享發(fā)展理念,在城南建起了“望月閣”及環(huán)閣公園.小亮、小芳等同學(xué)想用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量“望月閣”的高度,來(lái)檢驗(yàn)自己掌握知識(shí)和運(yùn)用知識(shí)的能力.他們經(jīng)過(guò)觀察發(fā)現(xiàn),觀測(cè)點(diǎn)與“望月閣”底部間的距離不易測(cè)得,因此經(jīng)過(guò)研究需要兩次測(cè)量,于是他們首先用平面鏡進(jìn)行測(cè)量,方法如下:如圖,小芳在小亮和“望月閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個(gè)標(biāo)記,這個(gè)標(biāo)記在直線BM上的對(duì)應(yīng)位置為點(diǎn)C,鏡子不動(dòng),小亮看著鏡面上的標(biāo)記,他來(lái)回走動(dòng),
3、走到點(diǎn)D時(shí),看到“望月閣”頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時(shí),測(cè)得小亮眼睛與地面的高度ED=1.5米,CD=2米;然后,在陽(yáng)光下,他們用測(cè)影長(zhǎng)的方法進(jìn)行了第二次測(cè)量,方法如下:如圖,小亮從D點(diǎn)沿DM方向走了16米,到達(dá)“望月閣”影子的末端F點(diǎn)處,此時(shí),測(cè)得小亮身高FG的影長(zhǎng)FH=2.5米,F(xiàn)G=1.65米.
如圖,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測(cè)量時(shí)所使用的平面鏡的厚度忽略不計(jì).請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出“望月閣”的高AB的長(zhǎng)度.
第2題圖
解: 由題意可得∠ABC=∠EDC=∠GFH=90°,
∠ACB=∠ECD, ∠AFB=∠GHF,
故△ABC∽△EDC,△ABF∽△GFH,
則=, =,
即=, =, 解得AB=99.
答:“望月閣”的高AB的長(zhǎng)度為99米.
2