《(通用版)2018年中考數(shù)學總復習 專題突破預測與詳解 第三單元 函數(shù) 專題12 二次函數(shù)試題 (新版)新人教版》由會員分享,可在線閱讀,更多相關《(通用版)2018年中考數(shù)學總復習 專題突破預測與詳解 第三單元 函數(shù) 專題12 二次函數(shù)試題 (新版)新人教版(3頁珍藏版)》請在裝配圖網上搜索。
1、
專題12二次函數(shù)
2016~2018詳解詳析第15頁
A組基礎鞏固
1.(2017廣東東莞一模,10,3分)在同一坐標系中,一次函數(shù)y=ax+b與二次函數(shù)y=bx2+a的圖象可能是(C)
2.(2017遼寧模擬,9,3分)關于拋物線y=x2-(a+1)x+a-2,下列說法錯誤的是(C)
A.開口向上
B.當a=2時,經過坐標原點O
C.a>0時,對稱軸在y軸左側
D.不論a為何值,都經過定點(1,-2)
3.(2018中考預測)已知二次函數(shù)y=kx2-7x-7的圖象與x軸沒有交點,則k的取值范圍為(C)
A.k>-
B.
2、k≥-且k≠0
C.k<-
D.k>-且k≠0
4.(2017江蘇常州模擬,13,2分)已知點A(x1,y1),B(x2,y2)在二次函數(shù)y=x2-4x-1的圖象上,若1”“<”“=”填空) ?導學號92034050?
5.(2017江蘇泰州泰興一模,12,3分)二次函數(shù)y=x2-2x+3的圖象向左平移一個單位,再向上平移兩個單位后,所得二次函數(shù)的解析式為y=x2+4. ?導學號92034051?
6.
(2017浙江寧波鎮(zhèn)海模擬,23,10分)如圖,已知拋物線y=x2+bx+c經過A(-1,0),B(3,
3、0)兩點.
(1)求拋物線的解析式和頂點坐標;
(2)當0
4、1=-2,x2=4,
此時P點坐標為(-2,5)或(4,5).
②當y=-5時,x2-2x-3=-5,方程無解.
綜上所述,P點坐標為(-2,5)或(4,5).
?導學號92034052?
B組能力提升
1.(2017湖南永州祁陽二模,9,4分)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結論:
①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0.
其中所有正確結論的序號是(C)
A.③④ B.②③ C.①④ D.①②③
2.(2017四川綿陽涪城模擬,9,3分)如圖,在矩形ABCD中,AB=4,AD=3,點E,F分別在邊AB,CD上,且
5、∠FEA=60°,連接EF,將∠BEF對折,點B落在直線EF上的點B'處,得折痕EM;將∠AEF對折,點A落在直線EF上的點A'處,得折痕EN,當M,N分別在邊BC,AD上時,若令△A'B'M的面積為y,AE的長度為x,則y關于x的函數(shù)解析式是(A)
A.y=-x2+6x-8
B.y=-2x2-12x+16
C.y=2x2+12x-16
D.y=-x2+2x- ?導學號92034053?
(第1題圖)
(第2題圖)
3.(2017陜西西安七十中第一次月考,16,4分)如圖,在△ABC中,∠B=90°,AB=6 cm,BC=12 cm.動點P從A點開始沿AB向B點以1
6、cm/s的速度運動(不與B點重合),動點Q從B點開始沿BC以2 cm/s的速度向C點運動(不與C點重合).如果P,Q同時出發(fā),四邊形APQC的面積最小時,要經過3秒.
4.(2018中考預測)在平面直角坐標系中,拋物線y=ax2+bx+c(a,b,c是常數(shù),a>0)的部分圖象如圖所示,直線x=1是它的對稱軸.若一元二次方程ax2+bx+c=0的一個根x1的取值范圍是2
7、圖所示二次函數(shù)y1=x2+2x+2與y2=x2-2x+2是“關于y軸對稱二次函數(shù)”.
(1)直接寫出兩條圖中“關于y軸對稱二次函數(shù)”圖象所具有的共同特點.
(2)二次函數(shù)y=2(x+2)2+1的“關于y軸對稱二次函數(shù)”解析式為 ;二次函數(shù)y=a(x-h)2+k的“關于y軸對稱二次函數(shù)”解析式為 .?
(3)平面直角坐標系中,記“關于y軸對稱二次函數(shù)”的圖象與y軸的交點為A,它們的兩個頂點分別為B,C,且BC=6,順次連接點A,B,O,C得到一個面積為24的菱形,求“關于y軸對稱二次函數(shù)”的函數(shù)表達式.
解 (1)頂點關于y軸對稱,對稱軸關于y軸對稱.
(2)y=2(x-2)2+1,y=a(x+h)2+k.
(3)如圖,
由BC=6,順次連接點A,B,O,C得到一個面積為24的菱形,得OA=8,A點坐標為(0,8),B點的坐標為(-3,4),
設一個拋物線的解析式為y=a(x+3)2+4,將A點坐標代入,得9a+4=8,解得a=,y=(x+3)2+4關于y軸對稱二次函數(shù)的函數(shù)表達式為y=(x-3)2+4.
3