九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2020年中考數(shù)學必考考點 專題13 反比例函數(shù)(含解析)

上傳人:Sc****h 文檔編號:88677575 上傳時間:2022-05-11 格式:DOCX 頁數(shù):18 大小:715.88KB
收藏 版權申訴 舉報 下載
2020年中考數(shù)學必考考點 專題13 反比例函數(shù)(含解析)_第1頁
第1頁 / 共18頁
2020年中考數(shù)學必考考點 專題13 反比例函數(shù)(含解析)_第2頁
第2頁 / 共18頁
2020年中考數(shù)學必考考點 專題13 反比例函數(shù)(含解析)_第3頁
第3頁 / 共18頁

下載文檔到電腦,查找使用更方便

26 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020年中考數(shù)學必考考點 專題13 反比例函數(shù)(含解析)》由會員分享,可在線閱讀,更多相關《2020年中考數(shù)學必考考點 專題13 反比例函數(shù)(含解析)(18頁珍藏版)》請在裝配圖網上搜索。

1、專題13 反比例函數(shù) 專題知識回顧 1.反比例函數(shù):形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k、 。 2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點。它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。 3.性質:(1)當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減小; (2)當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大。 4.|

2、k|的幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。 5.反比例函數(shù)解析式的確定 由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。 專題典型題考法及解析 【例題1】(2019山東棗莊)如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A.B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數(shù)y=(x>0)的圖象上,若AB=1,則k的值為(  ) A.1 B. C. D.2 【答案】A 【解析】根據(jù)題意可以求得OA和AC的長,從而可

3、以求得點C的坐標,進而求得k的值,本題得以解決. ∵等腰直角三角形ABC的頂點A.B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,AB=1, ∴∠BAC=∠BAO=45°, ∴OA=OB=,AC=, ∴點C的坐標為(,), ∵點C在函數(shù)y=(x>0)的圖象上, ∴k==1 故選:A. 【例題2】(2019湖南郴州)如圖,點A,C分別是正比例函數(shù)y=x的圖象與反比例函數(shù)y=4x的圖象的交點,過A點作AD⊥x軸于點D,過C點作CB⊥x軸于點B,則四邊形ABCD的面積為   . 【答案】8 【解析】∵A、C是兩函數(shù)圖象的交點, ∴A、C關于原點對稱

4、, ∵CD⊥x軸,AB⊥x軸, ∴OA=OC,OB=OD, ∴S△AOB=S△BOC=S△DOC=S△AOD, 又∵反比例函數(shù)y=4x的圖象上, ∴S△AOB=S△BOC=S△DOC=S△AOD=12×4=2, ∴S四邊形ABCD=4S△AOB=4×2=8, 故答案為:8. 【例題3】(2019江蘇鎮(zhèn)江)如圖,點A(2,n)和點D是反比例函數(shù)y=(m>0,x>0)圖像上的兩點,一次函數(shù)y=kx+3(k≠0)的圖像經過點A,與y軸交于點B,與x軸交于點C,過點D作DE⊥x軸,垂足為E,連接OA、OD.已知△OAB與△ODE的面積滿足S△OAB﹕S△ODE=3﹕4. (1)S△O

5、AB=________,m=________; (2)已知點P(6,0)在線段OE上,當∠PDE=∠CBO時,求點D的坐標. 【答案】見解析。 【解析】本題考查了反比例函數(shù)的性質,反比例函數(shù)的比例系數(shù)的幾何意義以及相似三角形的性質等,解題的關鍵是利用反比例函數(shù)的比例系數(shù)的幾何意義以及相似三角形的性質.先求出B點縱坐標和A點的橫坐標,利用利用三角形面積公式可得△OBA的面積,再根據(jù)面積的比較關系求出△ODE的面積,最后根據(jù)反比例函數(shù)的比例系數(shù)的幾何意義求出m的值;先由點A在雙曲線上,求出A點坐標;再先求出直線AB的解析式;連接DP,通過條件∠PDE=∠CBO,∠PED=∠COB=9

6、0°,得PD∥AB,于是可令直線PD的解析式為y=x+t,則0=×6+t,求出PD的解析式; 最后由解得,.從而鎖定D點的坐標. (1)∵一次函數(shù)y=kx+3(k≠0)的圖像經過點A,與y軸交于點B, ∴B(0,3),OB=3. ∵點A(2,n), ∴=2. ∴S△AOB=?OB?=×3×2=3. ∵S△OAB﹕S△ODE=3﹕4, ∴S△DOE=4. ∵DE⊥x軸,且點D在雙曲線y=上, ∴=4. ∵m>0, ∴m=8. (2)如答圖,連接PD, ∵點A(2,n)在雙曲線y=上, ∴2n=8,n=4,A(2,4). ∵一次函數(shù)y=kx+3(k≠

7、0)的圖像經過點A,與y軸交于點B, ∴4=2k+3. ∴k=,直線AB的解析式為y=x+3. ∵∠PDE=∠CBO,∠PED=∠COB=90°, ∴∠DPE=∠BCO. ∴PD∥AB. ∴令直線PD的解析式為y=x+t,則0=×6+t. ∴t=-3,直線PD的解析式為y=x-3. 由解得,. ∵點D在第一象限, ∴D(8,1). 專題典型訓練題 一、選擇題 1. (2019貴州省畢節(jié)市)若點A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函數(shù)y=﹣的圖象上,則y1、y2、y3的大小關系是(  ) A.

8、y1>y2>y3 B.y3>y2>y1 C.y2>y1>y3 D.y1>y3>y2 【答案】C. 【解析】根據(jù)反比例函數(shù)圖象上點的坐標特征求出y1、y2、y3的值,比較后即可得出結論. ∵點A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函數(shù)y=﹣的圖象上, ∴y1=﹣=,y2=﹣=,y3=﹣,又∵﹣<<,∴y3<y1<y2.故選:C. 2.(2019安徽)已知點A(1,﹣3)關于x軸的對稱點A'在反比例函數(shù)y=的圖象上,則實數(shù)k的值為( ?。? A.3 B. C.﹣3 D.﹣ 【答案】A 【解析】先根據(jù)關于x軸對稱的點的坐標特征確定A'的坐標為(1,3),然后把A

9、′的坐標代入y=中即可得到k的值. 點A(1,﹣3)關于x軸的對稱點A'的坐標為(1,3), 把A′(1,3)代入y=得k=1×3=3. 故選:A. 3.(2019黑龍江哈爾濱)點(-1,4)在反比例函數(shù)y=的圖象上,則下列各點在此函數(shù)圖象上的是( )。 A.(4,-1) B.(-,1) C.(-4,-1) D.(,2) 【答案】A 【解析】反比例函數(shù)的圖象及性質 將點(﹣1,4)代入y=, ∴k=﹣4,∴y=, ∴點(4,﹣1)在函數(shù)圖象上。 4. (2019湖北十堰)如圖,平面直角坐標系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函數(shù)y=kx的圖象分

10、別與線段AB,BC交于點D,E,連接DE.若點B關于DE的對稱點恰好在OA上,則k=( ?。? A.﹣20 B.﹣16 C.﹣12 D.﹣8 【答案】 【解析】根據(jù)點的坐標可得矩形的長和寬,易知點D的橫坐標,E的縱坐標,由反比例函數(shù)的關系式,可用含有k的代數(shù)式表示另外一個坐標,由三角形相似和對稱,可求出AF的長,然后把問題轉化到三角形ADF中,由勾股定理建立方程求出k的值. 解:過點E作EG⊥OA,垂足為G,設點B關于DE的對稱點為F,連接DF、EF、BF,如圖所示: 則△BDE≌△FDE, ∴BD=FD,BE=FE,∠DFE=∠DBE=90° 易證△ADF∽△GFE ∴

11、AFEG=DFFE, ∵A(﹣8,0),B(﹣8,4),C(0,4), ∴AB=OC=EG=4,OA=BC=8, ∵D、E在反比例函數(shù)y=kx的圖象上, ∴E(k4,4)、D(﹣8,-k8) ∴OG=EC=-k4,AD=-k8, ∴BD=4+k8,BE=8+k4 ∴BDBE=4+k88+k4=12=DFFE=AFEG, ∴AF=12EG=2, 在Rt△ADF中,由勾股定理:AD2+AF2=DF2 即:(-k8)2+22=(4+k8)2 解得:k=﹣12 5.(2019湖北仙桃)反比例函數(shù)y=-3x,下列說法不正確的是( ?。? A.圖象經過點(1,﹣3) B.圖象位于第

12、二、四象限 C.圖象關于直線y=x對稱 D.y隨x的增大而增大 【答案】D 【解析】由點(1,﹣3)的坐標滿足反比例函數(shù)y=-3x,故A是正確的; 由k=﹣3<0,雙曲線位于二、四象限,故B也是正確的; 由反比例函數(shù)的對稱性,可知反比例函數(shù)y=-3x關于y=x對稱是正確的,故C也是正確的, 由反比例函數(shù)的性質,k<0,在每個象限內,y隨x的增大而增大,不在同一象限,不具有此性質,故D是不正確的。 6. (2019黑龍江省龍東地區(qū))如圖,在平面直角坐標系中,點O為坐標原點,平行四邊形OABC的頂點A在反比例函數(shù)的圖象上,頂點B在反比例函數(shù) 的圖象上,點C在x軸的正半軸上,則平行四

13、邊形OABC的面積是( ) A. B. C.4 D.6 【答案】C 【解析】反比例函數(shù)的圖象和性質;平行四邊形的面積。 設A(a,b),B(a+m,b),依題意得,, ∴,化簡得m=4a.∵,∴ab=1, ∴S平行四邊形OABC=mb=4ab=4×1=4,故選C. 7.(2019廣西賀州)已知,一次函數(shù)與反比例函數(shù)在同一直角坐標系中的圖象 可能   【答案】A 【解析】若反比例函數(shù)經過第一、三象限,則.所以.則一次函數(shù)的圖象應該經過第一、二、三象限; 若反比例函數(shù)經過第二、四象限,則.所以.則一次函數(shù)的圖象應該經過第二、三、四象限.故選項正確

14、。 8.(2019?湖南衡陽)如圖,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=(m為常數(shù)且m≠0)的圖象都經過A(﹣1,2),B(2,﹣1),結合圖象,則不等式kx+b>的解集是(  ) A.x<﹣1 B.﹣1<x<0 C.x<﹣1或0<x<2 D.﹣1<x<0或x>2 【答案】C. 【解析】根據(jù)一次函數(shù)圖象在反比例函數(shù)圖象上方的x的取值范圍便是不等式kx+b>的解集. 由函數(shù)圖象可知,當一次函數(shù)y1=kx+b(k≠0)的圖象在反比例函數(shù)y2=(m為常數(shù)且m≠0)的圖象上方時,x的取值范圍是:x<﹣1或0<x<2, ∴不等式kx+b>的解集是x<﹣1或0<x<

15、2 9.(2019?湖北黃石)如圖,在平面直角坐標系中,點B在第一象限,BA⊥x軸于點A,反比例函數(shù)y=(x>0)的圖象與線段AB相交于點C,且C是線段AB的中點,點C關于直線y=x的對稱點C'的坐標為(1,n)(n≠1),若△OAB的面積為3,則k的值為( ?。? A. B.1 C.2 D.3 【答案】D. 【解析】根據(jù)對稱性求出C點坐標,進而得OA與AB的長度,再根據(jù)已知三角形的面積列出n的方程求得n,進而用待定系數(shù)法求得k. ∵點C關于直線y=x的對稱點C'的坐標為(1,n)(n≠1), ∴C(n,1), ∴OA=n,AC=1, ∴AB=2AC=2, ∵△OAB的面積

16、為3, ∴, 解得,n=3, ∴C(3,1), ∴k=3×1=3. 10.(2019內蒙古赤峰)如圖,點P是反比例函數(shù)y=kx(k≠0)的圖象上任意一點,過點P作PM⊥x軸,垂足為M.若△POM的面積等于2,則k的值等于( ?。? A.﹣4 B.4 C.﹣2 D.2 【答案】A 【解析】∵△POM的面積等于2, ∴12|k|=2, 而k<0, ∴k=﹣4. 11.(2019四川瀘州)如圖,一次函數(shù)y1=ax+b和反比例函數(shù)y2=kx的圖象相交于A,B兩點,則使y1>y2成立的x取值范圍是( ?。? A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4 C.x

17、<﹣2或x>4 D.﹣2<x<0或x>4 【答案】B 【解析】觀察函數(shù)圖象可發(fā)現(xiàn):當x<﹣2或0<x<4時,一次函數(shù)圖象在反比例函數(shù)圖象上方,∴使y1>y2成立的x取值范圍是x<﹣2或0<x<4.故選:B. 二、填空題 12.(2019貴州省畢節(jié)市) 如圖,在平面直角坐標中,一次函數(shù)y=﹣4x+4的圖象與x軸、y軸分別交于A、B兩點.正方形ABCD的頂點C、D在第一象限,頂點D在反比例函數(shù)y=(k≠0)的圖象上.若正方形ABCD向左平移n個單位后,頂點C恰好落在反比例函數(shù)的圖象上,則n的值是   . 【答案】3. 【解析】過點D作DE⊥x軸過點C作CF⊥y軸,可證△ABO≌

18、△DAE(AAS),△CBF≌△BAO(AAS),則可求D(5,1),C(4,5),確定函數(shù)解析式y(tǒng)=,C向左移動n個單位后為(4﹣n,5),進而求n的值; 過點D作DE⊥x軸,過點C作CF⊥y軸, ∵AB⊥AD, ∴∠BAO=∠DAE, ∵AB=AD,∠BOA=∠DEA, ∴△ABO≌△DAE(AAS), ∴AE=BO,DE=OA, 易求A(1,0),B(0,4), ∴D(5,1), ∵頂點D在反比例函數(shù)y=上, ∴k=5, ∴y=, 易證△CBF≌△BAO(AAS), ∴CF=4,BF=1, ∴C(4,5), ∵C向左移動n個單位后為(4﹣n,5), ∴5(

19、4﹣n)=5, ∴n=3, 故答案為3; 13.(2019湖北孝感)如圖,雙曲線y=9x(x>0)經過矩形OABC的頂點B,雙曲線y=kx(x>0)交AB,BC于點E、F,且與矩形的對角線OB交于點D,連接EF.若OD:OB=2:3,則△BEF的面積為  ?。? 【答案】2518 【解析】設D(2m,2n), ∵OD:OB=2:3, ∴A(3m,0),C(0,3n), ∴B(3m,3n), ∵雙曲線y=9x(x>0)經過矩形OABC的頂點B, ∴9=3m?3n, ∴mn=1, ∵雙曲線y=kx(x>0)經過點D, ∴k=4mn ∴雙曲線y=4mn

20、x(x>0), ∴E(3m,43n),F(xiàn)(43m,3n), ∴BE=3n-43n=53n,BF=3m-43m=53m, ∴S△BEF=12BE?BF=2518mn=2518 故答案為2518. 14.(2019北京市)在平面直角坐標系中,點在雙曲線上.點關于軸的對稱點在雙曲線上,則的值為_______. 【答案】0 【解析】關于x軸對稱的點的坐標特點、雙曲線上點的坐標與k的關系. ∵A、B兩點關于x軸對稱, ∴B點的坐標為. 又∵A、B兩點分別在又曲線和上; ∴. ∴;故填0. 15.(2019貴州省安順市) 如圖,直線l⊥x軸于點P,且與反比例函數(shù)y1=k1

21、/x(x>0)及y2=k2/x(x>0)的圖象分別交于A,B兩點,連接OA,OB,已知△OAB的面積為4,則k1﹣k2=  ?。? 第15題圖 【答案】8 【解析】∵反比例函數(shù)y1=(x>0)及y2=(x>0)的圖象 均在第一象限內, ∴k1>0,k2>0. ∵AP⊥x軸, ∴S△OAP=k1,S△OBP=k2. ∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=4, 解得:k1﹣k2=8. 故答案為:8. 16.(2019遼寧本溪)如圖,在平面直角坐標系中,等邊△OAB和菱形OCDE的邊OA,OE都在x軸上,點C在OB邊上,S△ABD=,反比例函數(shù)(x>0)的

22、圖象經過點B,則k的值為 【答案】. 【解析】過點D、B分別作x軸的垂線,垂足分別為M、N,設OE=2a,OA=2b,根據(jù)四邊形OCDE是菱形和△OAB為等邊三角形可得DM=a和BN=b進而得出S△ABD=S梯形BDMN+S△ABN-S△ADM,進而求出b2的值,然后根據(jù)反比例函數(shù)圖象上點的坐標特征即可求出k的值. 過點D、B分別作x軸的垂線,垂足分別為M、N. 設OE=2a,OA=2b. ∵四邊形OCDE是菱形, ∴DM=a. ∵△OAB為等邊三角形, ∴BN=b, ∴S△ABD=S梯形BDMN+S△ABN-S△ADM=, 解得b2=1. ∵點B的

23、坐標為(b,b),且點B在反比例函數(shù)的圖象上, ∴k=b2= 17.(2019廣西桂林)如圖,在平面直角坐標系中,反比例的圖象和都在第一象限內,,軸,且,點的坐標為.若將向下平移個單位長度,,兩點同時落在反比例函數(shù)圖象上,則的值為   ?。? 【答案】 【解析】,,點. ,, 將向下平移個單位長度, ,, ,兩點同時落在反比例函數(shù)圖象上, , 三、解答題 18.(2019年廣西柳州市)如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,2),將線段AB繞點A順時針旋轉90°得到線段AC,反比例函數(shù)y=(k≠0,x>0)的圖象經過點C. (1)求直線AB

24、和反比例函數(shù)y=(k≠0,x>0)的解析式; (2)已知點P是反比例函數(shù)y=(k≠0,x>0)圖象上的一個動點,求點P到直線AB距離最短時的坐標. 【答案】見解析。 【解析】將點A(1,0),點B(0,2),代入y=mx+b,可求直線解析式;過點C作CD⊥x軸,根據(jù)三角形全等可求C(3,1),進而確定k;設與AB平行的直線y=﹣2x+h,聯(lián)立﹣2x+b=,當△=b2﹣24=0時,點P到直線AB距離最短; (1)將點A(1,0),點B(0,2),代入y=mx+b, ∴b=2,m=﹣2, ∴y=﹣2x+2; ∵過點C作CD⊥x軸, ∵線段AB繞點A順時針旋轉90°得到線段AC,

25、 ∴△ABO≌△CAD(AAS), ∴AD=AB=2,CD=OA=1, ∴C(3,1), ∴k=3, ∴y=; (2)設與AB平行的直線y=﹣2x+h, 聯(lián)立﹣2x+b=, ∴﹣2x2+bx﹣3=0, 當△=b2﹣24=0時,b=,此時點P到直線AB距離最短; ∴P(,); 19. (2019黑龍江大慶)如圖,反比例函數(shù)和一次函數(shù)y=kx-1的圖象相交于A(m,2m),B兩點. (1)求一次函數(shù)的表達式; (2)求出點B的坐標,并根據(jù)圖象直接寫出滿足不等式

26、以,所以m=1,所以點A(1,2)反比例函數(shù),將點A代入一次函數(shù)可得,2=k-1,k=3,所以一次函數(shù)表達式為:y=3x-1; (2)令=3x-1,解之,得,x1=1,x2=,所以B(,-3),根據(jù)圖象可得不等式1. 20.(2019吉林?。┮阎獃是x的反比例函數(shù),并且當x=2時,y=6, (1) 求y關于x的函數(shù)解析式; (2) 當x=4時,求y的值 【答案】見解析。 【解析】將x=2時,y=6代入解析式即可求出待定系數(shù),即可求出解析式; 當x=4時,代入解析式,可求出y的值 (1)∵y是x的反比例函數(shù), ∴設y=(k≠0), ∵當x=2時,y=6, ∴k=xy=12, ∴y= (2)當x=4時, 代入y=得, y= 18

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!