4、)[2019·臺州]先化簡,再求值:3xx2-2x+1-3x2-2x+1,其中x=12.
13.[2018·曲靖]先化簡,再求值1a-b-ba2-b2÷a2-aba2-2ab+b2,其中a,b滿足a+b-12=0.
14.已知A=x2+2x+1x2-1-xx-1.
(1)化簡A;
(2)當x滿足不等式組x-1≥0,x-3<0且為整數(shù)時,求A的值.
15.化簡:aa2-4·a+2a2-3a-12-a,并求值.其中a與2,3構(gòu)成△ABC的三邊長,且a為整數(shù).
|拓展提升|
16.[2019
5、·遂寧]先化簡,再求值a2-2ab+b2a2-b2÷a2-aba-2a+b,其中a,b滿足(a-2)2+b+1=0.
17.對于任意的實數(shù)x,記f(x)=2x2x+1.
例如:f(1)=2121+1=23,
f(-2)=2-22-2+1=15.
(1)求f(2),f(-3)的值;
(2)試猜想f(x)+f(-x)的值,并說明理由;
(3)計算:f(-2016)+f(-2015)+…+f(-1)+f(0)+f(1)+…+f(2015)+f(2016).
【參考答案】
1.D 2.B 3.D 4.D
5.D [解析]∵a1=5
6、,a2是a1的差倒數(shù),∴a2=11-5=-14.
∵a3是a2的差倒數(shù),a4是a3的差倒數(shù),∴a3=11-(-14)=45,∴a4=11-45=5.
根據(jù)規(guī)律可得,an是以5,-14,45為周期進行循環(huán),∵2019=673×3,∴a2019=45.
6.-1 7.x≠12 8.a-4 9.15ba-b
10.11
11.n(n+1)2(2n+1) [解析]這組分數(shù)的分子分別為1,3=2+1,6=3+2+1,10=4+3+2+1,15=5+4+3+2+1,…,則第n個數(shù)的分子為n(n+1)2;分母分別為3=2+1,5=22+1,9=23+1,17=24+1,33=25+1,…,則第n個
7、數(shù)的分母是2n+1,所以第n個數(shù)an=n(n+1)2·12n+1=n(n+1)2(2n+1).
12.解:(1)原式=m(m+2)(m-2)÷m-2+2m-2=m(m+2)(m-2)÷mm-2=m(m+2)(m-2)·m-2m=1m+2.
(2)原式=3x-3x2-2x+1=3x-1.當x=12時,原式=312-1=-6.
13.解:1a-b-ba2-b2÷a2-aba2-2ab+b2
=a+b(a+b)(a-b)-b(a+b)(a-b)·(a-b)2a(a-b)
=a+b-b(a+b)(a-b)·a-ba
=aa+b·1a
=1a+b.
由于a,b滿足a+b-12=0,
所
8、以a+b=12,
因此原式化簡后的式子:1a+b=1÷12=2.
14.解:(1)A=(x+1)2(x+1)(x-1)-xx-1=x+1x-1-xx-1=x+1-xx-1=1x-1.
(2)解不等式組,得1≤x<3.
∵x為整數(shù),∴x=1或x=2.
∵A=1x-1,∴x≠1.
當x=2時,A=1x-1=12-1=1.
15.解:原式=a(a+2)(a-2)·a+2a(a-3)+1a-2
=1(a-2)(a-3)+a-3(a-2)(a-3)
=a-2(a-2)(a-3)
=1a-3.
∵a與2,3構(gòu)成△ABC的三邊長,∴3-2
9、為2或3或4.
當a=2時,分母2-a=0,舍去;當a=3時,分母a-3=0,舍去;故a的值只能為4.
當a=4時,原式=14-3=1.
16.解:原式=(a-b)2(a+b)(a-b)÷a(a-b)a-2a+b=a-ba+b·1a-b-2a+b=-1a+b.
∵(a-2)2+b+1=0,∴a=2,b=-1,
∴原式=-1.
17.解:(1)f(2)=2222+1=45,f(-3)=2-32-3+1=19.
(2)猜想:f(x)+f(-x)=1.
理由:f(x)+f(-x)=2x2x+1+2-x2-x+1=2x+12x+1=1.
(3)原式=2016×1+f(0)
=2016+12
=40332.
6