y-f(x0)=f′(x0)(x-x0)。3.基本初等函數(shù)的導(dǎo)數(shù)公式。3.基本初等函數(shù)的導(dǎo)數(shù)公式。f′(x)g(x)+f(x)g′(x)。2.(2014河南開(kāi)封二檢)曲線(xiàn)y=sin x+ex在點(diǎn)(0。1)處的切線(xiàn)方程是( ) A.x-3y+3。1.f′(x0)代表函數(shù)f(x)在x=x0處的導(dǎo)數(shù)值。(f(x0))′。
導(dǎo)數(shù)的概念與計(jì)算課件Tag內(nèi)容描述:
1、第10節(jié) 導(dǎo)數(shù)的概念與計(jì)算,基 礎(chǔ) 梳 理,平均,斜率,平均,切線(xiàn)的斜率,yf(x0)f(x0)(xx0),3基本初等函數(shù)的導(dǎo)數(shù)公式,0,x1,cos x,sin x,axln a,ex,f(x)g(x),f(x)g(x)f(x)g(x),答案:C,2(2014河南開(kāi)封二檢)曲線(xiàn)ysin xex在點(diǎn)(0,1)處的切線(xiàn)方程是( ) Ax3y30 Bx2y20 C2xy10 D3xy10 解析:ycos xex,故切線(xiàn)斜率為k2,切線(xiàn)方程為y2x1, 即2xy10. 答案:C,3(2014棗莊模擬)若yf(x)既是周期函數(shù),又是奇函數(shù),則其導(dǎo)函數(shù)yf(x)( ) A既是周期函數(shù),又是奇函數(shù) B既是周期函數(shù),又是偶函數(shù) C不是周期函數(shù),但是奇函數(shù) D不是周期函數(shù),但是偶函數(shù) 解析:因?yàn)閥f(。
2、第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用,第10節(jié) 導(dǎo)數(shù)的概念與計(jì)算,3基本初等函數(shù)的導(dǎo)數(shù)公式,方法點(diǎn)睛 求解與切線(xiàn)有關(guān)的問(wèn)題時(shí),要注意分析切點(diǎn)的性質(zhì),切點(diǎn)有3個(gè)性質(zhì):切點(diǎn)在曲線(xiàn)上;切點(diǎn)在切線(xiàn)上;在切點(diǎn)處的導(dǎo)數(shù)等于切線(xiàn)的斜率由此可以建立方程(組)求解參數(shù)的取值問(wèn)題,思維升華 【方法與技巧】,1f(x0)代表函數(shù)f(x)在xx0處的導(dǎo)數(shù)值;(f(x0)是函數(shù)值f(x0)的導(dǎo)數(shù),而函數(shù)值f(x0)是一個(gè)常量,其導(dǎo)數(shù)一定為0,即(f(x0)0. 2對(duì)于函數(shù)求導(dǎo),一般要遵循先化簡(jiǎn)再求導(dǎo)的基本原則求導(dǎo)時(shí),不但要重視求導(dǎo)法則的應(yīng)用,而且要特別注意求導(dǎo)法則對(duì)求導(dǎo)的制約作用,在。
3、第10節(jié) 導(dǎo)數(shù)的概念與計(jì)算,整合主干知識(shí),1函數(shù)的平均變化率,2導(dǎo)數(shù)的概念 (1)函數(shù)yf(x)在xx0處的導(dǎo)數(shù) 定義,3基本初等函數(shù)的導(dǎo)數(shù)公式,提示:正確,分x0,x0去絕對(duì)值,求導(dǎo)數(shù)可得,4導(dǎo)數(shù)的運(yùn)算法則和復(fù)。
4、第10節(jié)導(dǎo)數(shù)的概念與計(jì)算 知識(shí)鏈條完善把散落的知識(shí)連起來(lái) 教材導(dǎo)讀 1 函數(shù)圖像的切線(xiàn)與函數(shù)圖像一定只有一個(gè)公共點(diǎn)嗎 提示 不一定 例y x3在點(diǎn) 1 1 處的切線(xiàn)y 3x 2與y x3有兩個(gè)公共點(diǎn) 2 曲線(xiàn)y f x 在點(diǎn)P x0 y0 處的切。