圖1-46 用圓弧連接兩直線。2019-2020年初中數(shù)學競賽專題復習 第二篇 平面幾何 第15章 面積問題與面積方法試題1 新人教版 15.1.1★如圖。2019-2020年初中數(shù)學競賽專題復習 第二篇 平面幾何 第18章 整數(shù)幾何試題 新人教版 18.1.1★已知的兩條高長分別是5、15。
平面幾何Tag內容描述:
1、高級機械設計制圖培訓,制圖平面幾何畫法教案,1用圓弧連接兩直線,如圖1-46所示,已知直線AC和CB,連接圓弧的半徑為R,求作連接圓弧。,作圖步驟:,(1)在直線AC上任找一點并以其為垂足作直線AC的垂線,再在該垂線上找到垂足的距離為R的另一點,并過該點作直線AC的平行線。,(2)用同樣方法作出距離等于R的BC直線的平行線。,圖1-46 用圓弧連接兩直線,(3)找到兩平行線的交點0即為連接圓弧的圓心。,(4)自點0分別向直線AC和BC作垂線,得垂足1、2,即為連接圓弧的連接點(切點)。,(5)以0為圓心、R為半徑作圓弧12,完成連接作圖。,2用圓弧。
2、10 / 10平面幾何五種模型等積,鳥頭,蝶形,相似,共邊1、等積模型 等底等高的2個三角形面積相等2個三角形高相等,面積比=底之比2個三角形底相等,面積比=高之比夾在一組平行線之間的等積變形(方方模型)等積模型是基本應用應是爛熟于心的都是利用面積公式得到的推定比例如下:1等底等高的2個平行四邊形面積相等2三角形面積等于它等底等高的平行四邊形面積的一半3 2個平行四邊形高相等,面積比=底之比;2個平行四邊形底相等,面積比=高之比2、鳥頭模型(共角定理)鳥頭定理:2個三角形中,有一個角相等或互補,這2個三角形叫做共角三角形。
3、小學奧數(shù)平面幾何五種模型(等積,鳥頭,蝶形,相似,共邊)目標:熟練掌握五大面積模型等積,鳥頭,蝶形,相似(含金字塔模型和沙漏模型),共邊(含燕尾模型和風箏模型), 掌握五大面積模型的各種變形知識點撥一、等積模型等底等高的兩個三角形面積相等;兩個三角形高相等,面積比等于它們的底之比;兩個三角形底相等,面積比等于它們的高之比;如右圖夾在一組平行線之間的等積變形,如右圖;反之,如果,則可知直線平行于等底等高的兩個平行四邊形面積相等(長方形和正方形可以看作特殊的平行四邊形);三角形面積等于與它等底等高的平。
4、.高中平面幾何葉中豪學習要點幾何問題的轉化圓冪與根軸Ptolemy定理及應用幾何變換及相似理論位似及其應用完全四邊形與Miquel點垂足三角形與等角共軛反演與配極,調和四邊形射影幾何復數(shù)法及重心坐標方法例題和習題1四邊形ABCD中,AB=BC,DEAB,CDBC,EFBC,且。求證:2EF=DE+DC。(10081902.gsp)2已知相交兩圓O和O交于A、B兩點,且O恰在圓O上,P為圓O的AOB弧段上任意一點。APB的平分線交圓O于Q點。求證:PQ2=PAPB。(10092401-1. gsp)3設三角形ABC的Fermat點為R,連結AR,BR,CR,三角形ABR,BCR,ACR的九點圓心分別為D,E,F(xiàn),則三角形。
5、平面幾何中幾個重要定理及其證明一、 塞瓦定理1塞瓦定理及其證明定理:在ABC內一點P,該點與ABC的三個頂點相連所在的三條直線分別交ABC三邊AB、BC、CA于點D、E、F,且D、E、F三點均不是ABC的頂點,則有證明:運用面積比可得根據(jù)等比定理有,所以同理可得,三式相乘得注:在運用三角形的面積比時,要把握住兩個三角形是“等高”還是“等底”,這樣就可以產(chǎn)生出“邊之比”2塞瓦定理的逆定理及其證明定理:在ABC三邊AB、BC、CA上各有一點D、E、F,且D、E、F均不是ABC的頂點,若,那么直線CD、AE、BF三線共點證明:設直線AE與直線BF交于點P,。
6、第一講 注意添加平行線證題在同一平面內,不相交的兩條直線叫平行線.平行線是初中平面幾何最基本的,也是非常重要的圖形.在證明某些平面幾何問題時,若能依據(jù)證題的需要,添加恰當?shù)钠叫芯€,則能使證明順暢、簡潔.添加平行線證題,一般有如下四種情況.1 為了改變角的位置大家知道,兩條平行直線被第三條直線所截,同位角相等,內錯角相等,同旁內角互補.利用這些性質,??赏ㄟ^添加平行線,將某些角的位置改變,以滿足求解的需要.例1 設P、Q為線段BC上兩點,且BPCQ,A為BC外一動點(如圖1).當點A運動到使BAPCAQ時,ABC是什么三角形?試證明你的結論.答: 當。
7、高中數(shù)學競賽專題講座平面幾何基礎知識(基本定理、基本性質)1 勾股定理(畢達哥拉斯定理)(廣義勾股定理)(1)銳角對邊的平方,等于其他兩邊之平方和,減去這兩邊中的一邊和另一邊在這邊上的射影乘積的兩倍(2)鈍角對邊的平方等于其他兩邊的平方和,加上這兩邊中的一邊與另一邊在這邊上的射影乘積的兩倍2 射影定理(歐幾里得定理)3 中線定理(巴布斯定理)設ABC的邊BC的中點為P,則有;中線長:4 垂線定理:高線長:5 角平分線定理:三角形一個角的平分線分對邊所成的兩條線段與這個角的兩邊對應成比例如ABC中,AD平分BAC,則;(外角平。
8、高中平面幾何定理匯總及證明1. 共邊比例定理有公共邊AB的兩個三角形的頂點分別是P、Q,AB與PQ的連線交于點M,則有以下比例式成立: PAB的面積: QAB的面積PM:QM.證明:分如下四種情況,分別作三角形高,由相似三角形可證SPAB=(SPAM-SPMB)=(SPAM/SPMB-1)SPMB=(AM/BM-1)SPMB(等高底共線,面積比=底長比)同理,SQAB=(AM/BM-1)SQMB所以,SPAB/SQAB=SPMB/SQMB=PM/QM(等高底共線,面積比=底長比)定理得證!特殊情況:當PBAQ時,易知PAB與QAB的高相等,從而SPAB=SQAB,反之,SPAB=SQAB,則PBAQ。 2. 正弦定理在任意一個平面三角形中,各邊和它。
9、小學奧數(shù)平面幾何五種模型(等積,鳥頭,蝶形,相似,共邊)目標:熟練掌握五大面積模型等積,鳥頭,蝶形,相似(含金字塔模型和沙漏模型),共邊(含燕尾模型和風箏模型), 掌握五大面積模型的各種變形知識點撥一、等積模型等底等高的兩個三角形面積相等;兩個三角形高相等,面積比等于它們的底之比;兩個三角形底相等,面積比等于它們的高之比;如右圖夾在一組平行線之間的等積變形,如右圖;反之,如果,則可知直線平行于等底等高的兩個平行四邊形面積相等(長方形和正方形可以看作特殊的平行四邊形);三角形面積等于與它等底等高的平。
10、平面幾何知識點匯總(一)知識點一 相交線和平行線1.定理與性質對頂角的性質:對頂角相等。2.垂線的性質:性質1:過一點有且只有一條直線與已知直線垂直。性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。3.平行公理:經(jīng)過直線外一點有且只有一條直線與已知直線平行。平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。4.平行線的性質:性質1:兩直線平行,同位角相等。性質2:兩直線平行,內錯角相等。性質3:兩直線平行,同旁內角互補。5.平行線的判定:判定1:同位角相等,兩直線平行。判定2:。
11、第一講 注意添加平行線證題在同一平面內,不相交的兩條直線叫平行線.平行線是初中平面幾何最基本的,也是非常重要的圖形.在證明某些平面幾何問題時,若能依據(jù)證題的需要,添加恰當?shù)钠叫芯€,則能使證明順暢、簡潔.添加平行線證題,一般有如下四種情況.1、為了改變角的位置大家知道,兩條平行直線被第三條直線所截,同位角相等,內錯角相等,同旁內角互補.利用這些性質,常可通過添加平行線,將某些角的位置改變,以滿足求解的需要.例1 、設P、Q為線段BC上兩點,且BPCQ,A為BC外一動點(如圖1).當點A運動到使BAPCAQ時,ABC是什么三角形?試證明你的結論.答:。
12、01 凸四邊形 ABCD 的對角線交于點 M,點 P、Q 分別是 AMD 和CMB 重心,R、S 分 別是DMC 和MAB 的垂心求證 PQRS 證:過 A、C 分別作 BD 的平行線,過 B、D 分別作 AC 的平行線這四條直線分別相 交于 X、 W、Y、Z 則四邊形 XWYZ 為平行四邊形,且 XWAC XZ 則四邊形 XAMD、MBYC 皆為平行四邊形 由其對角線互相平分知 MX 在AMD 中線所在直線上, MY 在BMC 中線所在直線上,且 = = MPMX 13 MQMY XYPQ 故欲證原命題,只需證 XY RS,這等價于 SY 2SX 2 = RY 2RX 2 下證上式:由 S 為AMB 垂心知 SBAM SBWY 同理 SAWX則勾股定理知 SY 2 = SB 2 + BY。
13、回顧作業(yè):,由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質,如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。,2.5.1平面幾何中的向量方法,一、長度關系,例1、平行四邊形是表示向量加法與減法的幾何模型。如圖,你能發(fā)現(xiàn)平行四邊形對角線的長度與兩條鄰邊長度之間的關系嗎?,1.長方形對角線的長度與兩條鄰邊長度之間有何關系?,2.類比猜想,平行四邊形有相似關系嗎?,用向。
14、高中)平面幾何基礎知識(基本定理、基本性質)1 勾股定理(畢達哥拉斯定理)(廣義勾股定理)(1)銳角對邊的平方,等于其他兩邊之平方和,減去這兩邊中的一邊和另一邊在這邊上的射影乘積的兩倍(2)鈍角對邊的平方等于其他兩邊的平方和,加上這兩邊中的一邊與另一邊在這邊上的射影乘積的兩倍2 射影定理(歐幾里得定理)3 中線定理(巴布斯定理)設ABC的邊BC的中點為P,則有;中線長:4 垂線定理:高線長:5 角平分線定理:三角形一個角的平分線分對邊所成的兩條線段與這個角的兩邊對應成比例如ABC中,AD平分BAC,則;(外角平分線定理)角平。
15、幾何的初步知識平面圖形知識網(wǎng)絡:1. 直線、線段、射線直線可以向兩端無限延長.直線上兩點之間的一段叫做線段.把線段的一端無限延長,就得到一條射線.2. 垂線和平行線垂線 兩條直線相交成直角時,這兩條直線叫做互相垂直.其中一條叫做另一條的垂線.平行線 在同一平面內不相交的兩條直線叫做平行線.3. 角從一點引出的兩條射線所圍成的圖形叫做角.(要了解:銳角、直角、鈍角、平角)4. 長方形對邊相等,四個角都是直角的四邊形叫做長方形.長方形的周長和面積公式:5. 正方形四條邊都相等,四個角都是直角的四邊形,叫做正方形.正方形的周長和面積公。
16、初中生平面幾何,知識點及例題解答,目錄,一、圖形的認知及簡單圖形,幾何圖形的定義,立體圖形和平面圖形,展開圖、多面體以及旋轉體,直線、射線、線段,線段的中點,如圖,點B把線段AC分成兩條相等的線段,點B叫做線段AC。
17、本課時欄目開關,本課時欄目開關,填一填知識要點、記下疑難點,本課時欄目開關,填一填知識要點、記下疑難點,本課時欄目開關,研一研問題探究、課堂更高效,本課時欄目開關,研一研問題探究、課堂更高效,本課時欄目。
18、2019-2020年高中數(shù)學競賽輔導資料平面幾何名定理 四個重要定理: 梅涅勞斯(Menelaus)定理(梅氏線) ABC的三邊BC、CA、AB或其延長線上有點P、Q、R,則P、Q、R共線的充要條件是 。 塞瓦(Ceva)定理(塞瓦點)。