【高考前三個(gè)月復(fù)習(xí)數(shù)學(xué)理科函數(shù)與導(dǎo)數(shù)】專題3 第16練
《【高考前三個(gè)月復(fù)習(xí)數(shù)學(xué)理科函數(shù)與導(dǎo)數(shù)】專題3 第16練》由會(huì)員分享,可在線閱讀,更多相關(guān)《【高考前三個(gè)月復(fù)習(xí)數(shù)學(xué)理科函數(shù)與導(dǎo)數(shù)】專題3 第16練(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第16練 定積分問(wèn)題 [題型分析高考展望] 定積分在理科高考中,也是重點(diǎn)考查內(nèi)容.主要考查定積分的計(jì)算和利用定積分求不規(guī)則圖形的面積,題目難度不大,多為中低檔題目,常以選擇題、填空題的形式考查,掌握定積分的計(jì)算公式,會(huì)求各種類型的曲邊圖形的面積是本節(jié)重點(diǎn). ??碱}型精析 題型一 定積分的計(jì)算 例1 (1)(2014陜西)定積分?(2x+ex)dx的值為( ) A.e+2 B.e+1 C.e D.e-1 (2)(2014江西)若f(x)=x2+2?f(x)dx,則?f(x)dx等于( ) A.-1 B.- C. D.1 點(diǎn)評(píng) (1)計(jì)算定積分要先將被積函數(shù)化簡(jiǎn)后利用運(yùn)算性質(zhì)分解成幾個(gè)簡(jiǎn)單函數(shù)的定積分,再利用微積分基本定理求解; (2)對(duì)有關(guān)函數(shù)圖象和圓的定積分問(wèn)題可以利用定積分的幾何意義求解. 變式訓(xùn)練1 (1)設(shè)f(x)=則?f(x)dx等于( ) A. B. C. D.不存在 (2)若定積分?dx=,則m等于( ) A.-1 B.0 C.1 D.2 題型二 利用定積分求曲邊梯形的面積 例2 (1)(2014山東)直線y=4x與曲線y=x3在第一象限內(nèi)圍成的封閉圖形的面積為( ) A.2 B.4 C.2 D.4 (2)直線l過(guò)拋物線C:x2=4y的焦點(diǎn)且與y軸垂直,則l與C所圍成的圖形的面積等于( ) A. B.2 C. D. (3)由曲線y=sin x,y=cos x與直線x=0,x=所圍成的平面圖形(如圖中的陰影部分所示)的面積是( ) A.1 B. C. D.2-2 點(diǎn)評(píng) 求曲邊多邊形面積的步驟: (1)畫(huà)出草圖,在直角坐標(biāo)系中畫(huà)出曲線或直線的大致圖形. (2)借助圖形確定被積函數(shù),求出交點(diǎn)坐標(biāo),確定積分的上限、下限. (3)將曲邊梯形的面積表示為若干個(gè)定積分之和. (4)計(jì)算定積分. 變式訓(xùn)練2 (2015陜西)如圖,一橫截面為等腰梯形的水渠,因泥沙沉積,導(dǎo)致水渠截面邊界呈拋物線型(圖中虛線表示),則原始的最大流量與當(dāng)前最大流量的比值為_(kāi)_______. 高考題型精練 1.已知自由落體運(yùn)動(dòng)的速率v=gt,則落體運(yùn)動(dòng)從t=0到t=t0所走的路程為( ) A. B.gt C. D. 2.(2015廣州模擬)若(sin x-acos x)dx=2,則實(shí)數(shù)a等于( ) A.-1 B.1 C.- D. 3.由直線x=-,x=,y=0與曲線y=cos x所圍成的封閉圖形的面積為( ) A. B.1 C. D. 4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S10=?(1+2x)dx,S20=17,則S30為( ) A.15 B.20 C.25 D.30 5.(2015德州模擬)圖中陰影部分的面積是( ) A.16 B.18 C.20 D.22 6.(2015北京朝陽(yáng)區(qū)模擬)設(shè)f(x)=(其中e為自然對(duì)數(shù)的底數(shù)),則 ?f(x)dx的值為( ) A. B. C. D. 7.(2014湖南)已知函數(shù)f(x)=sin(x-φ),且f(x)dx=0,則函數(shù)f(x)的圖象的一條對(duì)稱軸 是( ) A.x= B.x= C.x= D.x= 8.設(shè)n=4sin xdx,則二項(xiàng)式(x-)n的展開(kāi)式的常數(shù)項(xiàng)是( ) A.12 B.6 C.4 D.1 9.曲線y=與直線y=x,x=2所圍成的圖形的面積為_(kāi)_______. 10.(2015青島模擬)已知函數(shù)f(x)=-x3+ax2+bx(a,b∈R)的圖象如圖所示,它與x軸在原點(diǎn)處相切,且x軸與函數(shù)圖象所圍區(qū)域(圖中陰影部分)的面積為,則a的值為_(kāi)_______. 11.(2015福建)如圖,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(2,4),函數(shù)f(x)=x2,若在矩形ABCD內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率等于______. 12.求曲線y=,y=2-x,y=-x所圍成圖形的面積. 答案精析 第16練 定積分問(wèn)題 ??碱}型精析 例1 (1)C (2)B 解析 (1)?(2x+ex)dx=(x2+ex)|=e.故選C. (2)∵f(x)=x2+2?f(x)dx, ∴?f(x)dx=(x3+2x?f(x)dx)| =+2?f(x)dx,∴?f(x)dx=-. 變式訓(xùn)練1 (1)C (2)A 解析 (1)?f(x)dx=?x2dx+?(2-x)dx =x3|+| =+=. (2)根據(jù)定積分的幾何意義知,定積分?dx的值就是函數(shù)y=的圖象與x軸及直線x=-2,x=m所圍成圖形的面積,y=是一個(gè)半徑為1的半圓,其面積等于,而?dx=,即在區(qū)間[-2,m]上該函數(shù)圖象應(yīng)為個(gè)圓,于是得m=-1,故選A. 例2 (1)D (2)C (3)D 解析 (1)令4x=x3,解得x=0或x=2, ∴S=?(4x-x3)==8-4=4,故選D. (2)∵拋物線方程為x2=4y, ∴其焦點(diǎn)坐標(biāo)為F(0,1),故直線l的方程為y=1. 如圖所示,可知l與C圍成的圖形的面積等于矩形OABF的面積與函數(shù)y=x2的圖象和x軸正半軸及直線x=2圍成的圖形的面積的差的2倍(圖中陰影部分的2倍), 即S=4-2?dx==4-=. (3)方法一 由sin x=cos x(x∈(0,)),得x=. 故所求陰影部分的面積 S= (cos x-sin x)dx+ (sin x-cos x)dx =(sin x+cos x) +(-cos x-sin x) =sin +cos -sin 0-cos 0+[(-cos -sin )-(-cos -sin )]=2-2. 故選D. 方法二 由sin x=cos x(x∈(0,)),得x=. 根據(jù)圖象的對(duì)稱性,可知所求陰影部分的面積 S=2 (cos x-sin x)dx =2(sin x+cos x) =2(sin +cos -sin 0-cos 0) =2-2. 故選D. 變式訓(xùn)練2 1.2 解析 由題意可知最大流量的比即為橫截面面積的比,建立以拋物線頂點(diǎn)為原點(diǎn)的直角坐標(biāo)系,如圖所示, 設(shè)拋物線方程為y=ax2,將點(diǎn)(5,2)代入拋物線方程得a=,故拋物線方程為y=x2,拋物線的橫截面面積為S1=2dx =2=(m2), 而原梯形下底為10-2=6(m), 故原梯形面積為S2=(10+6)2=16, ==1.2. 高考題型精練 1.C [由題意,可知所走路程為==gt2=gt.] 2.A [(sinx-acosx)dx=(-cos x-asin x)=-a+1=2,a=-1.] 3.D [cos xdx=sin x=sin -sin=.] 4.A [由已知得S10=?(1+2x)dx=12, 據(jù)等差數(shù)列性質(zhì)可得S10=12,S20-S10=5,S30-S20=S30-17亦成等差數(shù)列, 故有12+S30-17=10?S30=15.] 5.B [S=?dy==18.] 6.A [根據(jù)定積分的運(yùn)算法則,由題意,可知?f(x)dx=?x2dx+?dx=x3|+ln x|=+1=.] 7.A [∵sin(x-φ)dx=-cos(x-φ)=0, ∴-cos(-φ)+cos φ=0. ∴cos(-φ)-cos φ=0. ∴sin φ-cos φ=0. ∴sin(φ-)=0. ∴φ-=k1π(k1∈Z). ∴φ=k1π+(k1∈Z). ∴f(x)=sin(x-k1π-)(k1∈Z). 由x-k1π-=k2π+(k1,k2∈Z) 得x=(k1+k2)π+π(k1,k2∈Z), ∴f(x)的對(duì)稱軸方程為x=(k1+k2)π+π(k1,k2∈Z).故x=為函數(shù)f(x)的一條對(duì)稱軸.] 8.B [由定積分得n=-4cos x=4, 二項(xiàng)式的通項(xiàng)公式為Tk+1=Cx4-k(-)k =C(-1)kx4-2k, 由4-2k=0,得k=2, 所以常數(shù)項(xiàng)為T3=C(-1)2=6,故選B.] 9.-ln 2 解析 S=?(x-)dx = =-ln 2. 10.-1 解析 由曲線在原點(diǎn)處與x軸相切,可得f′(0)=b=0, 此時(shí)f(x)=-x3+ax2=x2(a-x), 據(jù)定積分知陰影部分面積-?(-x3+ax2)dx=, 解得a=-1. 11. 解析 由題意知,陰影部分的面積 ?(4-x2)dx==, ∴所求概率P===. 12.解 由 得交點(diǎn)A(1,1); 由 得交點(diǎn)B(3,-1). 故所求面積S=?dx+?dx =+ =++=.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
5 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考前三個(gè)月復(fù)習(xí)數(shù)學(xué)理科 函數(shù)與導(dǎo)數(shù) 【高考前三個(gè)月復(fù)習(xí)數(shù)學(xué)理科 函數(shù)與導(dǎo)數(shù)】專題3 第16練 考前 三個(gè)月 復(fù)習(xí) 數(shù)學(xué) 理科 函數(shù) 導(dǎo)數(shù) 專題 16
鏈接地址:http://www.szxfmmzy.com/p-11144112.html