657 YC1090貨車驅動橋的結構設計
657 YC1090貨車驅動橋的結構設計,657,YC1090貨車驅動橋的結構設計,yc1090,貨車,驅動,結構設計
目 錄 1前 言 1 2 總 體方案論證 .2 2.1 非斷 開式驅動橋 .2 2.2 斷 開式驅動橋 .3 2.3 多橋驅動的布置 .3 3 主減速 器設 計 .5 3.1 主減速器結構方案分析 .5 3.2 主減速器主、從動錐齒輪的支承 方案 .6 3.3 主減速器錐齒輪設計 .7 3.4 主減速器錐齒輪的材料 10 3.5 主減速器錐齒輪的強度計算 10 3.6 主減速器錐齒輪軸 承的設計計算 12 4 差速 器設計 17 4.1 差速器結構形式選擇 17 4.2 普通 錐齒輪式差速器齒輪設計 17 4.3 差速器齒輪的材料 19 4.4 普通錐齒輪式差速器齒輪強度計算 20 5 驅動車 輪的傳 動裝 置設計 21 5.1 半軸的型式 21 5.2 半軸的設計與計算 21 5.3 半軸的結構設計及材料與熱處理 24 6 驅 動橋殼設計 25 6.1 橋殼的結構型式 25 6.2 橋殼的受力分析及強度計算 25 7 結論 27 參 考 文 獻 .28 致 謝 29 1 1 前言 本課題是對 YC1090 貨車驅動橋的結構設計。故本說明書將以 “驅動橋設計” 內容對驅動橋及其主要零部件的結構型式與設計計算作一一介紹。 驅動橋的設計,由驅動橋的結構組成、功用、工作特點及設計要求講起,詳細 地分析了驅動橋總成的結構型式及布置方法;全面介紹了驅動橋車輪的傳動裝置和 橋殼的各種結構型式與設計計算方法。 汽車驅動橋是汽車的重大總成,承載著汽車的滿載簧荷重及地面經車輪、車架 及承載式車身經懸架給予的鉛垂力、縱向力、橫向力及其力矩,以及沖擊載荷;驅 動橋還傳遞著傳動系中的最大轉矩,橋殼還承受著反作用力矩。汽車驅動橋結構型 式和設計參數(shù)除對汽車的可靠性與耐久性有重要影響外,也對汽車的行駛性能如動 力性、經濟性、平順性、通過性、機動性和操動穩(wěn)定性等有直接影響。另外,汽車 驅動橋在汽車的各種總成中也是涵蓋機械零件、部件、分總成等的品種最多的大總 成。例如,驅動橋包含主減速器、差速器、驅動車輪的傳動裝置(半軸及輪邊減速 器) 、橋殼和各種齒輪。由上述可見,汽車驅動橋設計涉及的機械零部件及元件的 品種極為廣泛,對這些零部件、元件及總成的制造也幾乎要設計到所有的現(xiàn)代機械 制造工藝。因此,通過對汽車驅動橋的學習和設計實踐,可以更好的學習并掌握現(xiàn) 代汽車設計與機械設計的全面知識和技能。 課題所設計的貨車最高車速 V≥85km/h,發(fā)動機標定功率(3000r/min)99kW , 最大扭矩(1200~1400r/min)430 Nm。 他有以下兩大難題,一是將發(fā)動機輸出扭矩通過萬向傳動軸將動力傳遞到后輪 子上,達到更好的車輪牽引力與轉向力的有效發(fā)揮,從而提高汽車的行駛能力。二 是差速器向兩邊半軸傳遞動力的同時,允許兩邊半軸以不同的轉速旋轉,滿足兩邊 車輪盡可能以純滾動的形式作不等距行駛,減少輪胎與地面的摩擦。 本課題的設計思路可分為以下幾點:首先選擇初始方案,YC1090 屬于中型貨車, 采用后橋驅動,所以設計的驅動橋結構需要符合中型貨車的結構要求;接著選擇各 部件的結構形式;最后選擇各部件的具體參數(shù),設計出各主要尺寸。 所設計的 YC1090貨車驅動橋制造工藝性好、外形美觀,工作更穩(wěn)定、可靠。 該驅動橋設計大大降低了制造成本,同時驅動橋使用維護成本也降低了。驅動橋結 構符合 YC1090貨車的整體結構要求。設計的產品達到了結構簡單,修理、保養(yǎng)方 便;機件工藝性好,制造容易的要求。 目前我國正在大力發(fā)展汽車產業(yè),采用后輪驅動汽車的平衡性和操作性都將會 有很大的提高。后輪驅動的汽車加速時,牽引力將不會由前輪發(fā)出,所以在加速轉 彎時,司機就會感到有更大的橫向握持力,操作性能變好。維修費用低也是后輪驅 動的一個優(yōu)點,盡管由于構造和車型的不同,這種費用將會有很大的差別。如果你 的變速器出了故障,對于后輪驅動的汽車就不需要對差速器進行維修,但是對于前 輪驅動的汽車來說也許就有這個必要了,因為這兩個部件是做在一起的。 所以后輪驅動必然會使得乘車更加安全、舒適,從而帶來可觀的經濟效益。 YC1090 貨車驅動橋的設計 2 2 總體方案論證 驅動橋處于動力傳動系的末端,其基本功能是增大由傳動軸或變速器傳來的轉 矩,并將動力合理地分配給左、右驅動輪,另外還承受作用于路面和車架或車身之 間的垂直力力和橫向力。驅動橋一般由主減速器、差速器、車輪傳動裝置和驅動橋 殼等組成。 驅動橋設計應當滿足如下基本要求: a)所選擇的主減速比應能保證汽車具有最佳的動力性和燃料經濟性。 b)外形尺寸要小,保證有必要的離地間隙。 c)齒輪及其它傳動件工作平穩(wěn),噪聲小。 d)在各種轉速和載荷下具有高的傳動效率。 e)在保證足夠的強度、剛度條件下,應力求質量小,尤其是簧下質量應盡量小, 以改善汽車平順性。 f)與懸架導向機構運動協(xié)調,對于轉向驅動橋,還應與轉向機構運動協(xié)調。 g)結構簡單,加工工藝性好,制造容易,拆裝,調整方便。 驅動橋的結構型式按工作特性分,可以歸并為兩大類,即非斷開式驅動橋和斷 開式驅動橋。當驅動車輪采用非獨立懸架時,應該選用非斷開式驅動橋;當驅動車 輪采用獨立懸架時,則應該選用斷開式驅動橋。因此,前者又稱為非獨立懸架驅動 橋;后者稱為獨立懸架驅動橋。獨立懸架驅動橋結構叫復雜,但可以大大提高汽車 在不平路面上的行駛平順性。 2.1 非斷開式驅動橋 普通非斷開式驅動橋,由于結構簡單、造價低廉、工作可靠,廣泛用在各種載 貨汽車、客車和公共汽車上,在多數(shù)的越野汽車和部分轎車上也采用這種結構。他 們的具體結構、特別是橋殼結構雖然各不相同,但是有一個共同特點,即橋殼是一 根支承在左右驅動車輪上的剛性空心梁,齒輪及半軸等傳動部件安裝在其中。這時 整個驅動橋、驅動車輪及部分傳動軸均屬于簧下質量,汽車簧下質量較大,這是它 的一個缺點。 驅動橋的輪廓尺寸主要取決于主減速器的型式。在汽車輪胎尺寸和驅動橋下的 最小離地間隙已經確定的情況下,也就限定了主減速器從動齒輪直徑的尺寸。在給 定速比的條件下,如果單級主減速器不能滿足離地間隙要求,可該用雙級結構。在 雙級主減速器中,通常把兩級減速器齒輪放在一個主減速器殼體內,也可以將第二 級減速齒輪作為輪邊減速器。對于輪邊減速器:越野汽車為了提高離地間隙,可以 將一對圓柱齒輪構成的輪邊減速器的主動齒輪置于其從動齒輪的垂直上方;公共汽 車為了降低汽車的質心高度和車廂地板高度,以提高穩(wěn)定性和乘客上下車的方便, 可將輪邊減速器的主動齒輪置于其從動齒輪的垂直下方;有些雙層公共汽車為了進 一步降低車廂地板高度,在采用圓柱齒輪輪邊減速器的同時,將主減速器及差速器 總成也移到一個驅動車輪的旁邊。 3 在少數(shù)具有高速發(fā)動機的大型公共汽車、多橋驅動汽車和超重型載貨汽車上, 有時采用蝸輪式主減速器,它不僅具有在質量小、尺寸緊湊的情況下可以得到大的 傳動比以及工作平滑無聲的優(yōu)點,而且對汽車的總體布置很方便。 2.2 斷開式驅動橋 斷開式驅動橋區(qū)別于非斷開式驅動橋的明顯特點在于前者沒有一個連接左右驅 動車輪的剛性整體外殼或梁。斷開式驅動橋的橋殼是分段的,并且彼此之間可以做 相對運動,所以這種橋稱為斷開式的。另外,它又總是與獨立懸掛相匹配,故又稱 為獨立懸掛驅動橋。這種橋的中段,主減速器及差速器等是懸置在車架橫粱或車廂 底板上,或與脊梁式車架相聯(lián)。主減速器、差速器與傳動軸及一部分驅動車輪傳動 裝置的質量均為簧上質量。兩側的驅動車輪由于采用獨立懸掛則可以彼此致立地相 對于車架或車廂作上下擺動,相應地就要求驅動車輪的傳動裝置及其外殼或套管作 相應擺動。 汽車懸掛總成的類型及其彈性元件與減振裝置的工作特性是決定汽車行駛平順 性的主要因素,而汽車簧下部分質量的大小,對其平順性也有顯著的影響。斷開式 驅動橋的簧下質量較小,又與獨立懸掛相配合,致使驅動車輪與地面的接觸情況及 對各種地形的適應性比較好,由此可大大地減小汽車在不平路面上行駛時的振動和 車廂傾斜,提高汽車的行駛平順性和平均行駛速度,減小車輪和車橋上的動載荷及 零件的損壞,提高其可靠性及使用壽命。但是,由于斷開式驅動橋及與其相配的獨 立懸掛的結構復雜,故這種結構主要見于對行駛平順性要求較高的一部分轎車及一 些越野汽車上,且后者多屬于輕型以下的越野汽車或多橋驅動的重型越野汽車。 2.3 多橋驅動的布置 為了提高裝載量和通過性,有些重型汽車及全部中型以上的越野汽車都是采用 多橋驅動,常采用的有 4×4、6×6、8×8 等驅動型式。在多橋驅動的情況下,動 力經分動器傳給各驅動橋的方式有兩種。相應這兩種動力傳遞方式,多橋驅動汽車 各驅動橋的布置型式分為非貫通式與貫通式。前者為了把動力經分動器傳給各驅動 橋,需分別由分動器經各驅動橋自己專用的傳動軸傳遞動力,這樣不僅使傳動軸的 數(shù)量增多,且造成各驅動橋的零件特別是橋殼、半軸等主要零件不能通用。而對 8×8汽車來說,這種非貫通式驅動橋就更不適宜,也難于布置了。 為了解決上述問題,現(xiàn)代多橋驅動汽車都是采用貫通式驅動橋的布置型式。 在貫通式驅動橋的布置中,各橋的傳動軸布置在同一縱向鉛垂平面內,并且各 驅動橋不是分別用自己的傳動軸與分動器直接聯(lián)接,而是位于分動器前面的或后面 的各相鄰兩橋的傳動軸,是串聯(lián)布置的。汽車前后兩端的驅動橋的動力,是經分動 器并貫通中間橋而傳遞的。其優(yōu)點是,不僅減少了傳動軸的數(shù)量,而且提高了各驅 動橋零件的相互通用性,并且簡化了結構、減小了體積和質量。這對于汽車的設計 (如汽車的變型)、制造和維修,都帶來方便。 由于非斷開式驅動橋結構簡單、造價低廉、工作可靠,查閱資料,參照國內相 YC1090 貨車驅動橋的設計 4 關貨車的設計,最后本課題選用非斷開式驅動橋。 其結構如圖 2-1所示: 1-半軸 2-圓錐滾子軸承 3-支承螺栓 4-主減速器從動錐齒輪 5-油封 6-主減速器主動錐齒輪 7-彈簧座 8-墊圈 9-輪轂 10-調整螺母 圖 2-1 驅動橋 5 3 主減速器設計 主減速器是汽車傳動系中減小轉速、增大扭矩的主要部件,它是依靠齒數(shù)少的 錐齒輪帶動齒數(shù)多的錐齒輪。對發(fā)動機縱置的汽車,其主減速器還利用錐齒輪傳動 以改變動力方向。由于汽車在各種道路上行使時,其驅動輪上要求必須具有一定的 驅動力矩和轉速,在動力向左右驅動輪分流的差速器之前設置一個主減速器后,便 可使主減速器前面的傳動部件如變速器、萬向傳動裝置等所傳遞的扭矩減小,從而 可使其尺寸及質量減小、操縱省力。 驅動橋中主減速器、差速器設計應滿足如下基本要求: a)所選擇的主減速比應能保證汽車既有最佳的動力性和燃料經濟性。 b)外型尺寸要小,保證有必要的離地間隙;齒輪其它傳動件工作平穩(wěn),噪音 小。 c)在各種轉速和載荷下具有高的傳動效率;與懸架導向機構與動協(xié)調。 d)在保證足夠的強度、剛度條件下,應力求質量小,以改善汽車平順性。 e)結構簡單,加工工藝性好,制造容易,拆裝、調整方便。 3.1 主減速器結構方案分析 主減速器的結構形式主要是根據(jù)齒輪類型、減速形式的不同而不同。 3.1.1 螺旋錐齒輪傳動 圖 3-1 螺旋錐齒輪傳動 按齒輪副結構型式分,主減速器的齒輪傳動主要有螺旋錐齒輪式傳動、雙曲面 齒輪式傳動、圓柱齒輪式傳動(又可分為軸線固定式齒輪傳動和軸線旋轉式齒輪傳 動即行星齒輪式傳動)和蝸桿蝸輪式傳動等形式。 在發(fā)動機橫置的汽車驅動橋上,主減速器往往采用簡單的斜齒圓柱齒輪;在發(fā) 動機縱置的汽車驅動橋上,主減速器往往采用圓錐齒輪式傳動或準雙曲面齒輪式傳 動。 為了減少驅動橋的外輪廓尺寸,主減速器中基本不用直齒圓錐齒輪而采用螺旋 錐齒輪。因為螺旋錐齒輪不發(fā)生根切(齒輪加工中產生輪齒根部切薄現(xiàn)象,致使齒 輪強度大大降低)的最小齒數(shù)比直齒輪的最小齒數(shù)少,使得螺旋錐齒輪在同樣的傳 YC1090 貨車驅動橋的設計 6 動比下主減速器結構較緊湊。此外,螺旋錐齒輪還具有運轉平穩(wěn)、噪聲小等優(yōu)點, 汽車上獲得廣泛應用。 近年來,有些汽車的主減速器采用準雙曲面錐齒輪(車輛行業(yè)中簡稱雙曲面?zhèn)?動)傳動。準雙曲面錐齒輪傳動與圓錐齒輪相比,準雙曲面齒輪傳動不僅工作平穩(wěn) 性更好,彎曲強度和接觸強度更高,同時還可使主動齒輪的軸線相對于從動齒輪軸 線偏移。當主動準雙曲面齒輪軸線向下偏移時,可降低主動錐齒輪和傳動軸位置, 從而有利于降低車身及整車重心高度,提高汽車行使的穩(wěn)定性。東風 EQ1090E型汽 車即采用下偏移準雙曲面齒輪。但是,準雙曲面齒輪傳遞轉矩時,齒面間有較大的 相對滑動,且齒面間壓力很大,齒面油膜很容易被破壞。為減少摩擦,提高效率, 必須采用含防刮傷添加劑的雙曲面齒輪油,絕不允許用普通齒輪油代替,否則將時 齒面迅速擦傷和磨損,大大降低使用壽命。 查閱文獻[1]、[2],經方案論證,主減速器的齒輪選用螺旋錐齒輪傳動形式 (如圖 3-1示) 。螺旋錐齒輪傳動的主、從動齒輪軸線垂直相交于一點,齒輪并不 同時在全長上嚙合,而是逐漸從一端連續(xù)平穩(wěn)地轉向另一端。另外,由于輪齒端面 重疊的影響,至少有兩對以上的輪齒同時捏合,所以它工作平穩(wěn)、能承受較大的負 荷、制造也簡單。為保證齒輪副的正確嚙合,必須將支承軸承預緊,提高支承剛度, 增大殼體剛度。 3.1.2 結構形式 為了滿足不同的使用要求,主減速器的結構形式也是不同的。 按參加減速傳動的齒輪副數(shù)目分,有單級式主減速器和雙級式主減速器、雙速 主減速器、雙級減速配以輪邊減速器等。雙級式主減速器應用于大傳動比的中、重 型汽車上,若其第二級減速器齒輪有兩副,并分置于兩側車輪附近,實際上成為獨 立部件,則稱輪邊減速器。單級式主減速器應用于轎車和一般輕、中型載貨汽車。 單級主減速器由一對圓錐齒輪組成,具有結構簡單、質量小、成本低、使用簡單等 優(yōu)點。 查閱文獻[1]、[2],經方案論證,本設計主減速器采用單級主減速器。其傳動 比 i0一般小于等于 7。 3.2 主減速器主、從動錐齒輪的支承方案 主減速器中心必須保證主從動齒輪具有良好的嚙合狀況,才能使它們很好地工 作。齒輪的正確嚙合,除了與齒輪的加工質量裝配調整及軸承主減速器殼體的剛度 有關以外,還與齒輪的支承剛度密切相關。 3.2.1 主動錐齒輪的支承 7 圖 3-2主動錐齒輪跨置式 主動錐齒輪的支承形式可分為懸臂式支承和跨置式支承兩種。查閱資料、文獻, 經方案論證,采用跨置式支承結構(如圖 3-2示) 。齒輪前、后兩端的軸頸均以軸 承支承,故又稱兩端支承式??缰檬街С惺怪С袆偠却鬄樵黾?,使齒輪在載荷作用 下的變形大為減小,約減小到懸臂式支承的 1/30 以下.而主動錐齒輪后軸承的徑 向負荷比懸臂式的要減小至 1/5~1/7。齒輪承載能力較懸臂式可提高 10%左右。 裝載質量為 2t以上的汽車主減速器主動齒輪都是采用跨置式支承。本課題所 設計的 YC1090貨車裝載質量為 5t,所以選用跨置式。 圖 3-3從動錐齒輪支撐形式 3.2.2 從動錐齒輪的支承 從動錐齒輪采用圓錐滾子軸承支承(如圖 3-3示) 。為了增加支承剛度,兩軸 承的圓錐滾子大端應向內,以減小尺寸 c+d。為了使從動錐齒輪背面的差速器殼體 處有足夠的位置設置加強肋以增強支承穩(wěn)定性,c+d 應不小于從動錐齒輪大端分度 圓直徑的 70%。為了使載荷能均勻分配在兩軸承上,應是 c等于或大于 d。 3.3 主減速器錐齒輪設計 主減速比 i 、驅動橋的離地間隙和計算載荷,是主減速器設計的原始數(shù)據(jù),0 應在汽車總體設計時就確定。 3.3.1 主減速比 i 的確定0 主減速比對主減速器的結構型式、輪廓尺寸、質量大小以及當變速器處于最高 檔位時汽車的動力性和燃料經濟性都有直接影響。i 的選擇應在汽車總體設計時和0 YC1090 貨車驅動橋的設計 8 傳動系的總傳動比 i一起由整車動力計算來確定??衫迷诓煌?i 下的功率平衡田0 來研究 i 對汽車動力性的影響。通過優(yōu)化設計,對發(fā)動機與傳動系參數(shù)作最佳匹配0 的方法來選擇 i 值,可使汽車獲得最佳的動力性和燃料經濟性。 對于具有很大功率儲備的轎車、長途公共汽車尤其是競賽車來說,在給定發(fā)動 機最大功率 及其轉速 的情況下,所選擇的 i 值應能保證這些汽車有盡可能amxPpn0 高的最高車速 。這時 i 值應按下式來確定:v0 (3-rpamxghn=.37vi 1) 式中 ——車輪的滾動半徑, =0.5mr r igh——變速器量高檔傳動比。i gh =1 對于其他汽車來說,為了得到足夠的功率儲備而使最高車速稍有下降,i 一般0 選擇比上式求得的大 10%~25%,即按下式選擇: (3-rp0amxghFLBni=(.37~.42)vi 2) 式中 i——分動器或加力器的高檔傳動比 iLB——輪邊減速器的傳動比。 根據(jù)所選定的主減速比 i0值,就可基本上確定主減速器的減速型式(單級、雙 級等以及是否需要輪邊減速器) ,并使之與汽車總布置所要求的離地間隙相適應。 把 nn=3000r/n , =85km/h , r =0.5m , igh=1代入(3-1)amxv 計算出 i =6.330 從動錐齒輪計算轉矩 Tce Tce= (3-demax1f0kTiηn 3) 式中: Tce—計算轉矩,Nm; Temax—發(fā)動機最大轉矩;T emax =430 Nm n—計算驅動橋數(shù),1; if—變速器傳動比,i f=7.48; i0—主減速器傳動比,i 0=6.33; η—變速器傳動效率,η=0.96; k—液力變矩器變矩系數(shù),K=1; Kd—由于猛接離合器而產生的動載系數(shù),K d=1; i1—變速器最低擋傳動比,i 1=1; 代入式(3-3) ,有: 9 Tce=10190 Nm 主動錐齒輪計算轉矩 T=1516.4 Nm 3.3.2 主減速器錐齒輪的主要參數(shù)選擇 a)主、從動錐齒輪齒數(shù) z1和 z2 選擇主、從動錐齒輪齒數(shù)時應考慮如下因素; 為了嚙合平穩(wěn)、噪音小和具有高的疲勞強度,大小齒輪的齒數(shù)和不少于 40在 轎車主減速器中,小齒輪齒數(shù)不小于 9。 查閱資料,經方案論證,主減速器的傳動比為 6.33,初定主動齒輪齒數(shù) z1=6, 從動齒輪齒數(shù) z2=38。 b)主、從動錐齒輪齒形參數(shù)計算 按照文獻[3]中的設計計算方法進行設計和計算,結果見表 3-1。 從動錐齒輪分度圓直徑 dm2=14 =303.51mm 取 dm2=304mm3109 齒輪端面模數(shù) 2/4/8mz?? 表 3-1 主、從動錐齒輪參數(shù) 參 數(shù) 符 號 主動錐齒輪 從動錐齒輪 分度圓直徑 d=mz 64 304 齒頂高 ha=1.56m- h2;h2=0.27m 6.77 4.42 齒根高 hf=1.733m-ha 4.33 6.68 齒頂圓直徑 da=d+2hacosδ 90 376 齒根圓直徑 df=d-2hfcosδ 60 270 齒頂角 θ a 2°41′ 3°21′ 齒根角 θ f=arctan Rh2 3°21′ 2°41′ 分錐角 δ=arctan 21z14° 76° 頂錐角 δ a 15°41′ 78°21′ 根錐角 δ f 11°39′ 74°19′ 錐距 R= d2sin132 132 分度圓齒厚 S=3.14mz 9 9 齒寬 B=0.155d2 47 47 c)中點螺旋角 β YC1090 貨車驅動橋的設計 10 弧齒錐齒輪副的中點螺旋角是相等的。汽車主減速器弧齒錐齒輪螺旋角的平 均螺旋角一般為 35°~40°。貨車選用較小的 β 值以保證較大的 ε F,使運轉平 穩(wěn),噪音低。取 β=35°。 d)法向壓力角 α 法向壓力角大一些可以增加輪齒強度,減少齒輪不發(fā)生根切的最少齒數(shù),也 可以使齒輪運轉平穩(wěn),噪音低。對于貨車弧齒錐齒輪,α 一般選用 20°。 e) 螺旋方向 從錐齒輪錐頂看,齒形從中心線上半部向左傾斜為左旋,向右傾斜為右旋。 主、從動錐齒輪的螺旋方向是相反的。螺旋方向與錐齒輪的旋轉方向影響其所受 軸向力的方向。當變速器掛前進擋時,應使主動齒輪的軸向力離開錐頂方向,這 樣可以使主、從動齒輪有分離趨勢,防止輪齒卡死而損壞。 3.4 主減速器錐齒輪的材料 驅動橋錐齒輪的工作條件是相當惡劣的,與傳動系其它齒輪相比,具有載荷大、 作用時間長、變化多、有沖擊等特點。因此,傳動系中的主減速器齒輪是個薄弱環(huán) 節(jié)。主減速器錐齒輪的材料應滿足如下的要求: a)具有高的彎曲疲勞強度和表面接觸疲勞強度,齒面高的硬度以保證有高的 耐磨性。 b)齒輪芯部應有適當?shù)捻g性以適應沖擊載荷,避免在沖擊載荷下齒根折斷。 c)鍛造性能、切削加工性能以及熱處理性能良好,熱處理后變形小或變形規(guī) 律易控制。 d)選擇合金材料是,盡量少用含鎳、鉻呀的材料,而選用含錳、釩、硼、鈦、 鉬、硅等元素的合金鋼。 汽車主減速器錐齒輪與差速器錐齒輪目前常用滲碳合金鋼制造,主要有 20CrMnTi、20MnVB、20MnTiB、22CrNiMo 和 16SiMn2WMoV。滲碳合金鋼的優(yōu)點是表 面可得到含碳量較高的硬化層(一般碳的質量分數(shù)為 0.8%~1.2%) ,具有相當高的 耐磨性和抗壓性,而芯部較軟,具有良好的韌性。因此,這類材料的彎曲強度、表 面接觸強度和承受沖擊的能力均較好。由于鋼本身有較低的含碳量,使鍛造性能和 切削加工性能較好。其主要缺點是熱處理費用較高,表面硬化層以下的基底較軟, 在承受很大壓力時可能產生塑性變形,如果滲碳層與芯部的含碳量相差過多,便會 引起表面硬化層的剝落。 為改善新齒輪的磨合,防止其在余興初期出現(xiàn)早期的磨損、擦傷、膠合或咬死, 錐齒輪在熱處理以及精加工后,作厚度為 0.005~0.020mm 的磷化處理或鍍銅、鍍 錫處理。對齒面進行應力噴丸處理,可提高 25%的齒輪壽命。對于滑動速度高的齒 輪,可進行滲硫處理以提高耐磨性。 3.5 主減速器錐齒輪的強度計算 3.5.1 單位齒長圓周力 按發(fā)動機最大轉矩計算時 11 P= (3-demaxgf312kTiη×0nDb 4) 式中: ig—變速器傳動比,常取一擋傳動比,i g=7.48 ; D1—主動錐齒輪中點分度圓直徑 mm;D =64mm1 其它符號同前; 將各參數(shù)代入式(3-4) ,有: P=856 N/mm 按照文獻[1],P≤[P]=1429 N/mm,錐齒輪的表面耐磨性滿足要求。 3.5.2 齒輪彎曲強度 錐齒輪輪齒的齒根彎曲應力為: = (3-wσ30smvw2Tk×1bDJ 5) 式中: —錐齒輪輪齒的齒根彎曲應力,MPa;wσ T—齒輪的計算轉矩,Nm; k0—過載系數(shù),一般取 1; ks—尺寸系數(shù),0.682; km—齒面載荷分配系數(shù),懸臂式結構,k m=1.25; kv—質量系數(shù),取 1; b—所計算的齒輪齒面寬;b=47mm D—所討論齒輪大端分度圓直徑;D=304mm Jw—齒輪的輪齒彎曲應力綜合系數(shù),取 0.03; 對于主動錐齒輪, T=1516.4 Nm;從動錐齒輪,T=10190Nm; 將各參數(shù)代入式(3-5) ,有: 主動錐齒輪, =478MPa;wσ 從動錐齒輪, =466MPa; 按照文獻[1], 主從動錐齒輪的 ≤[ ]=700MPa,輪齒彎曲強度滿足要求。 3.5.3 輪齒接觸強度 錐齒輪輪齒的齒面接觸應力為: σ j= (3-6)p3z0smf1vjc2Tk×1DbJ 式中: σ j—錐齒輪輪齒的齒面接觸應力,MPa; YC1090 貨車驅動橋的設計 12 D1—主動錐齒輪大端分度圓直徑,mm;D1=64mm b—主、從動錐齒輪齒面寬較小值;b=47mm kf—齒面品質系數(shù),取 1.0; cp—綜合彈性系數(shù),取 232N1/2/mm; ks—尺寸系數(shù),取 1.0; Jj—齒面接觸強度的綜合系數(shù),取 0.01; Tz—主動錐齒輪計算轉矩;Tz=1516.4N.m k0、k m、k v選擇同式(3-5) 將各參數(shù)代入式 (3-6) ,有: σ j=2722MPa 按照文獻[1],σ j≤[σ j]=2800MPa,輪齒接觸強度滿足要求。 3.6 主減速器錐齒輪軸承的設計計算 3.6.1 錐齒輪齒面上的作用力 錐齒輪在工作過程中,相互嚙合的齒面上作用有一法向力。該法向力可分解為 沿齒輪切線方向的圓周力、沿齒輪軸線方向的軸向力以及垂直于齒輪軸線的徑向力。 a) 齒寬中 點處的圓周力 F F= (3-7)m2TD 式中: T—作用在從動齒輪上的轉矩; Dm2—從動齒輪齒寬中點處的分度圓直徑,由式(3-8)確定,即 Dm2=D2-b2sinγ 2 (3-8) 式中: D2—從動齒輪大端分度圓直徑;D2=304mm b2—從動齒輪齒面寬;b2=47mm γ 2—從動齒輪節(jié)錐角;γ 2=76° 將各參數(shù)代入式(3-8),有: Dm2=258mm 將各參數(shù)代入式(3-7),有: F=3000N 對于弧齒錐齒輪副,作用在主、從動齒輪上的圓周力是相等的。 b)錐齒輪的軸向力 Faz和徑向力 Frz(主動錐齒輪) 作用在主動錐齒輪齒面上的軸向力 Faz和徑向力分別為 Faz= (3-9)tanαsiγ+tβcosco 13 Frz= (3-10)tanαcosγ-Ftβin 將各參數(shù)分別代入式(3-9) 與式(3-10)中,有: Faz= 2752N,F(xiàn) rz=142N 3.6.2 錐齒輪軸承的載荷 當錐齒輪齒面上所受的圓周力、軸向力和徑向力計算確定后,根據(jù)主減速器齒 輪軸承的布置尺寸,即可求出軸承所受的載荷。圖 3-4為單級主減速器的跨置式支 承的尺寸布置圖: 圖 3-4 單級主減速器軸承布置尺寸 圖 3—4中各參數(shù)尺寸: a=46mm,b=22mm,c=90.5mm,d=60.5mm,e=40,D m2=304mm。 由主動錐齒輪齒面受力簡圖(圖 3-5所示) ,得出各軸承所受的徑向力與軸向 力。 YC1090 貨車驅動橋的設計 14 圖 3-5主動錐齒輪齒面受力簡圖 軸承 A:徑向力 Fr= (3-11) 22azm1rzFD(+b)(a)-????????? 軸向力 Fa= Faz (3-12) 將各參數(shù)代入式(3-11)與(3-12) ,有: Fr=3997N,F(xiàn) a=2752N 軸承 B:徑向力 Fr= (3- 22azm1rzD(+b)(ab)-???????????? 13) 軸向力 Fa= 0 (3-14) 將各參數(shù)代入式(3-13)與(3-14) ,有: Fr=1493N,F(xiàn) a=0N 軸承 C:徑向力 15 Fr= (3- 22azmrFDd+c(c)???????????? 15) 軸向力 Fa= Faz (3-16) 將各參數(shù)代入式(3-15)與(3-16) ,有: Fr=2283N,F(xiàn) a=2752N 軸承 D:徑向力 Fr= (3- 22azm1rDc+-cd(d)???????????? 17) 軸向力 Fa= 0 (3-18) 將各參數(shù)代入式(3-17)與(3-18) ,有: Fr=1745N,F(xiàn) a=0N 軸承 E:徑向力 Fr= (3- 22azm1rDe+-????????? 19) 軸向力 Fa= 0 (3-20) 將各參數(shù)代入式(3-19)與(3-20) ,有: Fr=1245N,F(xiàn) a=0N 3.6.3 錐齒輪軸承型號的確定 軸承 A 計算當量動載荷 P YC1090 貨車驅動橋的設計 16 =0.69arF275=39 查閱文獻[2],錐齒輪圓錐滾子軸承 e值為 0.36,故 e,由此得arF X=0.4,Y=1.7。另外查得載荷系數(shù) fp=1.2。 P=fp(XF r+YFa) (3- 21) 將各參數(shù)代入式(3-21)中,有: P=7533N 軸承應有的基本額定動負荷 C′ r C′ r= (3- 10h36tnLPf 22) 式中: ft—溫度系數(shù),查文獻[4],得 ft=1; ε—滾子軸承的壽命系數(shù),查文獻[4],得 ε=10/3; n—軸承轉速,r/min; L′ h—軸承的預期壽命,5000h; 將各參數(shù)代入式(3-22)中,有; C′ r=24061N 初選軸承型號 查文獻[3],初步選擇 Cr =24330N C′ r的圓錐滾子軸承 7206E。 驗算 7206E圓錐滾子軸承的壽命 Lh = (3- εtrf167nP?????? 23) 將各參數(shù)代入式(3-21)中,有: Lh =4151h5000h 所選擇 7206E圓錐滾子軸承的壽命低于預期壽命,故選 7207E軸承,經檢驗能 滿足。軸承 B、軸承 C、軸承 D、軸承 E強度都可按此方法得出,其強度均能夠滿足 要求。 17 4 差速器設計 汽車在行使過程中,左右車輪在同一時間內所滾過的路程往往是不相等的,左 右兩輪胎內的氣壓不等、胎面磨損不均勻、兩車輪上的負荷不均勻而引起車輪滾動 半徑不相等;左右兩輪接觸的路面條件不同,行使阻力不等等。這樣,如果驅動橋 的左、右車輪剛性連接,則不論轉彎行使或直線行使,均會引起車輪在路面上的滑 移或滑轉,一方面會加劇輪胎磨損、功率和燃料消耗,另一方面會使轉向沉重,通 過性和操縱穩(wěn)定性變壞。為此,在驅動橋的左右車輪間都裝有輪間差速器。 差速器是個差速傳動機構,用來在兩輸出軸間分配轉矩,并保證兩輸出軸有可 YC1090 貨車驅動橋的設計 18 能以不同的角速度轉動,用來保證各驅動輪在各種運動條件下的動力傳遞,避免輪 胎與地面間打滑。差速器按其結構特征可分為齒輪式、凸輪式、蝸輪式和牙嵌自由 輪式等多種形式。 4.1 差速器結構形式選擇 汽車上廣泛采用的差速器為對稱錐齒輪式差速器,具有結構簡單、質量較小等 優(yōu)點,應用廣泛。它可分為普通錐齒輪式差速器、摩擦片式差速器和強制鎖止式差 速器。 普通齒輪式差速器的傳動機構為齒輪式。齒輪差速器要圓錐齒輪式和圓柱齒輪 式兩種。 強制鎖止式差速器就是在對稱式錐齒輪差速器上設置差速鎖。當一側驅動輪滑 轉時,可利用差速鎖使差速器不起差速作用。差速鎖在軍用汽車上應用較廣。 查閱文獻[5]經方案論證,差速器結構形式選擇對稱式圓錐行星齒輪差速器。 普通的對稱式圓錐行星齒輪差速器由差速器左、右殼,2 個半軸齒輪,4 個行 星齒輪(少數(shù)汽車采用 3個行星齒輪,小型、微型汽車多采用 2個行星齒輪),行星 齒輪軸(不少裝 4個行星齒輪的差逮器采用十字軸結構),半軸齒輪及行星齒輪墊片 等組成。由于其結構簡單、工作平穩(wěn)、制造方便、用在公路汽車上也很可靠等優(yōu)點, 最廣泛地用在轎車、客車和各種公路用載貨汽車上.有些越野汽車也采用了這種結 構,但用到越野汽車上需要采取防滑措施。例如加進摩擦元件以增大其內摩擦,提 高其鎖緊系數(shù);或加裝可操縱的、能強制鎖住差速器的裝置——差速鎖等。 4.2 普通錐齒輪式差速器齒輪設計 a) 行星齒輪數(shù) n 通常情況下,貨車的行星齒輪數(shù) n=4。 b) 行星齒輪球面半徑 Rb 行星齒輪球面半徑 Rb反映了差速器錐齒輪節(jié)錐矩的大小和承載能力。 Rb=Kb (4-1)3dT 式中: Kb—行星齒輪球面半徑系數(shù),K b=2.5~3.0,對于有兩個行星齒輪的轎車取最 大值; Td—差速器計算轉矩,Nm; 將各參數(shù)代入式(4-1) ,有: Rb=34 mm c)行星齒輪和半軸齒輪齒數(shù) z1和 z2 為了使輪齒有較高的強度,z 1一般不少于 10。半軸齒輪齒數(shù) z2在 14~25 選用。 大多數(shù)汽車的半軸齒輪與行星齒輪的齒數(shù)比 在 1.5~2.0 的范圍內,且半軸齒輪21z 齒數(shù)和必須能被行星齒輪齒數(shù)整除。 19 查閱資料,經方案論證,初定半軸齒輪與行星齒輪的齒數(shù)比 =2,半軸齒輪齒21z 數(shù) z2=24,行星齒輪的齒數(shù) z 1=12。 d) 行星齒輪和半軸齒輪節(jié)錐角 γ 1、γ 2及模數(shù) m 行星齒輪和半軸齒輪節(jié)錐角 γ 1、γ 2分別為 γ 1= (4-2)2zarctn?????? γ 2= (4-3)1rtz 將各參數(shù)分別代入式(4—2)與式(4—3) ,有: γ 1=27°,γ 2=63° 錐齒輪大端模數(shù) m為 m= (4-4)01Asinz 將各參數(shù)代入式(4-4) ,有: m=5.497 查閱文獻[3],取模數(shù) m=5.5 e)半軸齒輪與行星齒輪齒形參數(shù) 按照文獻[3]中的設計計算方法進行設計和計算,結果見表 4-1。 f)壓力角 α 汽車差速齒輪大都采用壓力角 α=22°30′,齒高系數(shù)為 0.8的齒形。 表 4-1 半軸齒輪與行星齒輪參數(shù) 參 數(shù) 符 號 半軸齒輪 行星齒輪 分度圓直徑 d 141 96 齒頂高 ha 1.83 3.76 齒根高 hf 4.43 2.5 齒頂圓直徑 da 144 103 齒根圓直徑 df 133 84 YC1090 貨車驅動橋的設計 20 齒頂角 θ a 4°19′ 2°31′ 齒根角 θ f 2°31′ 4°19′ 分度圓錐角 δ 63° 27° 頂錐角 δ a 67°19′ 29°31′ 根錐角 δ f 60°29′ 22°41′ 錐距 R 47 46 分度圓齒厚 s 9 9 齒寬 b 20 27 g)行星齒輪軸用直徑 d 行星齒輪軸用直徑 d(mm)為 d= (4-??30cdT×1.σnr 5) 式中: T0—差速器殼傳遞的轉矩,Nm; n—行星齒輪數(shù); rd—行星齒輪支承面中點到錐頂?shù)木嚯x,mm; [σ c]—支承面許用擠壓應力,取 98 MPa; 將各參數(shù)代入式(4-5)中,有: d=15.7mm,取 16mm。 4.3 差速器齒輪的材料 差速器齒輪和主減速器齒輪一樣,基本上都是用滲碳合金鋼制造,目前用于制 造差速器錐齒輪的材料為 20CrMnTi、20CrMoTi、22CrMnMo 和 20CrMo等。由于差速 器齒輪輪齒要求的精度較低,所以精鍛差速器齒輪工藝已被廣泛應用。 4.4 普通錐齒輪式差速器齒輪強度計算 差速器齒輪的尺寸受結構限制,而且承受的載荷較大,它不像主減速器齒輪那 樣經常處于嚙合傳動狀態(tài),只有當汽車轉彎或左、右輪行使不同的路程時,或一側 車輪打滑而滑轉時,差速器齒輪才能有嚙合傳動的相對運動。因此,對于差速器齒 輪主要應進行彎曲強度計算。輪齒彎曲應力 σ w(MPa)為 σ w= (4-3smv2Tk×10bdJn 6) 21 式中: n—行星齒輪數(shù); J—綜合系數(shù),取 0.01; b2—半軸齒輪齒寬,mm; d2—半軸齒輪大端分度圓直徑,mm; T—半軸齒輪計算轉矩(Nm) ,T=0.6 T 0; ks、k m、k v按照主減速器齒輪強度計算的有關轉矩選??; 將各參數(shù)代入式(4-6)中,有: σ w=852 MPa 按照文獻[1], 差速器齒輪的 σ w≤[σ w]=980 MPa,所以齒輪彎曲強度滿足要 求。 5 驅動車輪的傳動裝置設計 驅動車輪的傳動裝置位于汽車傳動系的末端,其功用是將轉矩由差速器半軸齒 輪傳給驅動車輪。在斷開式驅動橋和轉向驅動橋中,驅動車輪的傳動裝置包括半軸 和萬向節(jié)傳動裝置且多采用等速萬向節(jié)。在一般非斷開式驅動橋上,驅動車輪的傳 YC1090 貨車驅動橋的設計 22 動裝置就是半軸,這時半軸將差速器半軸齒輪與輪轂連接起來。在裝有輪邊減速器 的驅動橋上,半軸將半軸齒輪與輪邊減速器的主動齒輪連接起來。 5.1 半軸的型式 普通非斷開式驅動橋的半軸,根據(jù)其外端的支承型式或受力狀況的不同而分為 半浮式、3/4 浮式和全浮式三種。 半浮式半軸以靠近外端的軸頸直接支承在置于橋殼外端內孔中的軸承上,而端 部則以具有錐面的軸頸及鍵與車輪輪轂相固定,或以突緣直接與車輪輪盤及制動鼓 相聯(lián)接)。因此,半浮式半軸除傳遞轉矩外,還要承受車輪傳來的彎矩。由此可見, 半浮式半軸承受的載荷復雜,但它具有結構簡單、質量小、尺寸緊湊、造價低廉等 優(yōu)點。用于質量較小、使用條件較好、承載負荷也不大的轎車和輕型載貨汽車。 3/4浮式半軸的結構特點是半軸外端僅有一個軸承并裝在驅動橋殼半軸套管的 端部,直接支承著車輪輪轂,而半軸則以其端部與輪轂相固定。由于一個軸承的支 承剛度較差,因此這種半軸除承受全部轉矩外,彎矩得由半軸及半軸套管共同承受, 即 3/4浮式半軸還得承受部分彎矩,后者的比例大小依軸承的結構型式及其支承剛 度、半軸的剛度等因素決定。側向力引起的彎矩使軸承有歪斜的趨勢,這將急劇降 低軸承的壽命??捎糜谵I車和輕型載貨汽車,但未得到推廣。 全浮式半軸的外端與輪轂相聯(lián),而輪轂又由一對軸承支承于橋殼的半軸套管上。 多采用一對圓錐滾子軸承支承輪轂,且兩軸承的圓錐滾子小端應相向安裝并有一定 的預緊,調好后由鎖緊螺母予以鎖緊,很少采用球軸承的結構方案。 由于車輪所承受的垂向力、縱向力和側向力以及由它們引起的彎矩都經過輪轂、 輪轂軸承傳給橋殼,故全浮式半軸在理論上只承受轉矩而不承受彎矩。但在實際工 作中由于加工和裝配精度的影響及橋殼與軸承支承剛度的不足等原因,仍可能使全 浮式半軸在實際使用條件下承受一定的彎矩,彎曲應力約為 5~70MPa。具有全浮式 半軸的驅動橋的外端結構較復雜,需采用形狀復雜且質量及尺寸都較大的輪轂,制 造成本較高,故轎車及其他小型汽車不采用這種結構。但由于其工作可靠,故廣泛 用于輕型以上的各類汽車上。 5.2 半軸的設計與計算 半軸的主要尺寸是它的直徑,設計與計算時首先應合理地確定其計算載荷。 半軸的計算應考慮到以下三種可能的載荷工況: a)縱向力 X2最大時(X 2=Z 2 )附著系數(shù)尹取 0.8,沒有側向力作用;? b)側向力 Y2最大時,其最大值發(fā)生于側滑時,為 Z2 中, ,側滑時輪胎與地1? 面?zhèn)认蚋街禂?shù) ,在計算中取 1.0,沒有縱向力作用;1? c)垂向力 Z2最大時,這發(fā)生在汽車以可能的高速通過不平路面時,其值為(Z 2- gw)kd,k d是動載荷系數(shù),這時沒有縱向力和側向力的作用。 由于車輪承受的縱向力、側向力值的大小受車輪與地面最大附著力的限制,即: 2=X+ 故縱向力 X2最大時不會有側向力作用,而側向力 Y2最大時也不會有縱向力作用。 23 5.2.1 全浮式半軸的設計計算 本課題采用帶有凸緣的全浮式半軸,其詳細的計算校核如下: a)全浮式半軸計算載荷的確定 全浮式半軸只承受轉矩,其計算轉矩按下式進行: T=ξT emaxig1i0 (5- 1) 式中:ξ——差速器的轉矩分配系數(shù),對圓錐行星齒輪差速器可取 =0.6;? ig1——變速器 1擋傳動比; i0——主減速比。 已知:T emax=430Nm;i g1=7.48; i 0=6.33 ; =0.6ξ 計算結果: T=0.6×430×7.48×6.33 =12215N.m 在設計時,全浮式半軸桿部直徑的初步選取可按下式進行: (5- 33310(2.5~.18).96[]TdT????? 2) 式中 d——半軸桿部直徑,mm; T——半軸的計算轉矩,Nrn; [ ]——半軸扭轉許用應力,MPa。? 根據(jù)上式帶入 T=12215 Nm,得: 32.50mm≤d≤33.85mm ?。篸=33mm 給定一個安全系數(shù) k=1.5 d=k×d =1.5×33 =50mm 全浮式半軸支承轉矩,其計算轉矩為: (5-22LrRrTX?? 3) 三種半軸的扭轉應力由下式計算: (5-3160d???? 4) 式中 ——半軸的扭轉應力,MPa;? T—一半軸的計算轉矩,T=12215Nm; YC1090 貨車驅動橋的設計 24 d——半軸桿部直徑,d=50mm。 將數(shù)據(jù)帶入式(5-3) 、 (5-4)得: =528MPa? 半軸花鍵的剪切應力為 (5- 310()/4bpBATzLjDd??? 5) 半軸花鍵的擠壓應力為 (5-2/)(]4/)[(10 3ABABpc ddLzT????????? 6) 式中 T——半軸承受的最大轉矩,T=12215Nm; DB——半軸花鍵(軸)外徑,D B=54mm; dA——相配的花鍵孔內徑,d A=50mm; z——花鍵齒數(shù); Lp——花鍵工作長度,L p=70mm; B——花鍵齒寬,B=9mm; ——載荷分布的不均勻系數(shù),取 0.75。? 將數(shù)據(jù)帶入式(5-5) 、 (5-6)得: =68Mpab? =169MPac? 半軸的最大扭轉角為 (5-3108????GJTl 7) 式中 T——半軸承受的最大轉矩,T=12215Nm; l——半軸長度,l=900mm; G——材料的剪切彈性模量,MPa; J——半軸橫截面的極慣性矩, mm 4。 將數(shù)據(jù)帶入式(5-7)得: = 8°? 半軸計算時的許用應力與所選用的材料、加工方法、熱處理工藝及汽車的使 用條件有關。當采用 40Cr,40MnB,40MnVB,40CrMnMo,40 號及 45號鋼等作為全 浮式半軸的材料時,其扭轉屈服極限達到 784MPa左右。在保證安全系數(shù)在 1.3~1.6 范圍時,半軸扭轉許用應力可取為[ =490~588MPa。]? 對于越野汽車、礦用汽車等使用條件差的汽車,應該取較大的安全系數(shù),這時 許用應力應取小值;對于使用條件較好的公路汽車則可取較大的許用應力。 25 當傳遞最大轉矩時,半軸花鍵的剪切應力不應超過 71.05MPa;擠壓應力不應該 超過 196MPa,半軸單位長度的最大轉角不應大于 8°/m。 5.3 半軸的結構設計及材料與熱處理 為了使半軸的花鍵內徑不小于其桿部直徑,常常將加工花鍵的端部做得粗些, 并適當?shù)販p小花鍵槽的深度,因此花鍵齒數(shù)必須相應地增加,通常取 10齒(轎車半 軸)至 18齒(載貨汽車半軸)。半軸的破壞形式多為扭轉疲勞破壞,因此在結構設計 上應盡量增大各過渡部分的圓角半徑以減小應力集中。重型車半軸的桿部較粗,外 端突緣也很大,當無較大鍛造設備時可采用兩端均為花鍵聯(lián)接的結構,且取相同花 鍵參數(shù)以簡化工藝。在現(xiàn)代汽車半軸上,漸開線花鍵用得較廣,但也有采用矩形或 梯形花鍵的。 半軸多采用含鉻的中碳合金鋼制造,如 40Cr,40CrMnMo,40CrMnSi,40CrMoA,35CrMnSi,35CrMnTi 等。40MnB 是我國研 制出的新鋼種,作為半軸材料效果很好。半軸的熱處理過去都采用調質處理的方法, 調質后要求桿部硬度為 HB388—444(突緣部分可降至 HB248)。近年來采用高頻、中 頻感應淬火的口益增多。這種處理方法使半軸表面淬硬達 HRC52~63,硬化層深約 為其半徑的 1/3,心部硬度可定為 HRC30—35;不淬火區(qū)(突緣等)的硬度可定在 HB248~277 范圍內。由于硬化層本身的強度較高,加之在半軸表面形成大的殘余壓 應力,以及采用噴丸處理、滾壓半軸突緣根部過渡圓角等工藝,使半軸的靜強度和 疲勞強度大為提高,尤其是疲勞強度提高得十分顯著。由于這些先進工藝的采用, 不用合金鋼而采用中碳(40 號、45 號)鋼的半軸也日益增多。 YC1090 貨車驅動橋的設計 26 6 驅動橋殼設計 驅動橋橋殼是汽車上的主要零件之一,非斷開式驅動橋的橋殼起著支承汽車荷 重的作用,并將載荷傳給車輪.作用在驅動車輪上的牽引力,制動力、側向力和垂 向力也是經過橋殼傳到懸掛及車架或車廂上。因此橋殼既是承載件又是傳力件,同 時它又是主減速器、差速器及驅動車輪傳動裝置(如半軸)的外殼。 在汽車行駛過程中,橋殼承受繁重的載荷,設計時必須考慮在動載荷下橋殼有 足夠的強度和剛度。為了減小汽車的簧下質量以利于降低動載荷、提高汽車的行駛 平順性,在保證強度和剛度的前提下應力求減小橋殼的質量.橋殼還應結構簡單、 制造方便以利于降低成本。其結構還應保證主減速器的拆裝、調整、維修和保養(yǎng)方 便。在選擇橋殼的結構型式時,還應考慮汽車的類型、使用要求、制造條件、材料 供應等。 6.1 橋殼的結構型式 橋殼的結構型式大致分為可分式 a)可分式橋殼 可分式橋殼的整個橋殼由一個垂直接合面分為左右兩部分,每一部分均由一個 鑄件殼體和一個壓入其外端的半軸套管組成。半軸套管與殼體用鉚釘聯(lián)接。在裝配 主減速器及差速器后左右兩半橋殼是通過在中央接合面處的一圈螺栓聯(lián)成一個整體。 其特點是橋殼制造工藝簡單、主減速器軸承支承剛度好。但對主減速器的裝配、調 整及維修都很不方便,橋殼的強度和剛度也比較低。過去這種所謂兩段可分式橋殼 見于輕型汽車,由于上述缺點現(xiàn)已很少采用。 b)整體式橋殼 整體式橋殼的特點是將整個橋殼制成一個整體,橋殼猶如一整體的空心粱,其 強度及剛度都比較好。且橋殼與主減速器殼分作兩體,主減速器齒輪及差速器均裝 在獨立的主減速殼里,構成單獨的總成,調整好以后再由橋殼中部前面裝入橋殼內, 并與橋殼用螺栓固定在一起。使主減速器和差速器的拆裝、調整、維修、保養(yǎng)等都 十分方便。 整體式橋殼按其制造工藝的不同又可分為鑄造整體式、鋼板沖壓焊接式和鋼管 擴張成形式三種。 6.2 橋殼的受力分析及強度計算 我國通常推薦:計算時將橋殼復雜的受力狀況簡化成三種典型的計算工況(與 前述半軸強度計算的三種載荷工況相同) 。 當牽引力或制動力最大時,橋殼鋼板彈簧座處危險端面的彎曲應力 和扭轉應? 27 力 為:? (6-1)vhMσ=W? (6-2)Tτ 式中 ——地面對車輪垂直反力在橋殼板簧座處危險端面引起的垂直平面內的彎vM 矩, ;hx2=Fb? ——橋殼板簧座到車輪面的距離;b ——牽引力或制動力 (一側車輪上的)在水平平面內引起的彎矩,h ;hx2 ——牽引或制動時,上述危險斷面所受的轉矩, ;T Tx2r=F? 、 ——分別為橋殼危險斷面垂直平面和水平面彎曲的抗彎截面系數(shù);vW ——危險斷面的抗扭截面系數(shù)。 將數(shù)據(jù)帶入式(6-2) 、 (6-3)得: =400 N/mm2 σ =250 N/mm2 τ 橋殼許用彎曲應力為 300-500N/mm2,許用扭轉應力為 150-400N/mm2。可鍛 造橋殼取較小值,鋼板沖壓焊接橋殼取最大值。 YC1090 貨車驅動橋的設計 28 7 結論 本課題設計的 YC1090貨車驅動橋,采用非斷開式驅動橋,由于結構簡單、主 減速器造價低廉、工作可靠,可以被廣泛用在各種中型載貨汽車。 設計介紹了后橋驅動的結構形式和工作原理,計算了差速器、主減速器以及半 軸的結構尺寸,進行了強度校核,并繪制了有關零件圖和裝配圖。 本驅動橋設計結構合理,符合實際應用,具有很好的動力性和經濟性,驅動橋 總成及零部件的設計能盡量滿足零件的標準化、部件的通用化和產品的系列化及汽 車變型的要求,修理、保養(yǎng)方便,機件工藝性好,制造容易。 但此設計過程仍有許多不足,在設計結構尺寸時,有些設計參數(shù)是按照以往經 驗值得出,這樣就帶來了一定的誤差。另外,在一些小的方面,由于時間問題,做 得還不夠仔細,懇請各位老師同學給予批評指正。 29 參 考 文 獻 [1] 劉惟信.汽車設計[M].北京:清華大學出版社,2001. [2] 陳家瑞. 汽車構造[M]. 北京:機械工業(yè)出版社,2003. [3] 汽車工程手冊編輯委員會.汽車工程手冊[M]:設計篇.北京:人民交通出版社,2001. [4] 汽車工程手冊編輯委員會.汽車工程手冊[M]:基礎篇.北京:人民交通出版社,2001. [5] 余志生. 汽車理論[M]. 北京:機械工業(yè)出版社, 1990. [6] 楊朝會,王豐元,馬浩.基于有限元方法的載貨汽車驅動橋殼分
收藏
編號:1117720
類型:共享資源
大?。?span id="24d9guoke414" class="font-tahoma">1.42MB
格式:RAR
上傳時間:2019-10-07
30
積分
- 關 鍵 詞:
-
657
YC1090貨車驅動橋的結構設計
yc1090
貨車
驅動
結構設計
- 資源描述:
-
657 YC1090貨車驅動橋的結構設計,657,YC1090貨車驅動橋的結構設計,yc1090,貨車,驅動,結構設計
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經上傳用戶書面授權,請勿作他用。