高考數(shù)學(xué) 考前3個(gè)月知識(shí)方法專(zhuān)題訓(xùn)練 第一部分 知識(shí)方法篇 專(zhuān)題10 數(shù)學(xué)思想 第40練 轉(zhuǎn)化與化歸思想 文
《高考數(shù)學(xué) 考前3個(gè)月知識(shí)方法專(zhuān)題訓(xùn)練 第一部分 知識(shí)方法篇 專(zhuān)題10 數(shù)學(xué)思想 第40練 轉(zhuǎn)化與化歸思想 文》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高考數(shù)學(xué) 考前3個(gè)月知識(shí)方法專(zhuān)題訓(xùn)練 第一部分 知識(shí)方法篇 專(zhuān)題10 數(shù)學(xué)思想 第40練 轉(zhuǎn)化與化歸思想 文(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第40練 轉(zhuǎn)化與化歸思想 [思想方法解讀] 轉(zhuǎn)化與化歸思想方法,就是在研究和解決有關(guān)數(shù)學(xué)問(wèn)題時(shí),采用某種手段將問(wèn)題通過(guò)變換使之轉(zhuǎn)化,進(jìn)而使問(wèn)題得到解決的一種數(shù)學(xué)方法.一般是將復(fù)雜的問(wèn)題通過(guò)變換轉(zhuǎn)化為簡(jiǎn)單的問(wèn)題,將難解的問(wèn)題通過(guò)變換轉(zhuǎn)化為容易求解的問(wèn)題,將未解決的問(wèn)題通過(guò)變換轉(zhuǎn)化為已解決的問(wèn)題.轉(zhuǎn)化與化歸思想是實(shí)現(xiàn)具有相互關(guān)聯(lián)的兩個(gè)知識(shí)板塊進(jìn)行相互轉(zhuǎn)化的重要依據(jù),如函數(shù)與不等式、函數(shù)與方程、數(shù)與形、式與數(shù)、角與邊、空間與平面、實(shí)際問(wèn)題與數(shù)學(xué)問(wèn)題的互化等,消去法、換元法、數(shù)形結(jié)合法等都體現(xiàn)了等價(jià)轉(zhuǎn)化思想,我們也經(jīng)常在函數(shù)、方程、不等式之間進(jìn)行等價(jià)轉(zhuǎn)化,在復(fù)習(xí)過(guò)程中應(yīng)注意相近主干知識(shí)之間的互化,注重知識(shí)的綜合性. 轉(zhuǎn)化與化歸思想的原則 (1)熟悉已知化原則:將陌生的問(wèn)題轉(zhuǎn)化為熟悉的問(wèn)題,將未知的問(wèn)題轉(zhuǎn)化為已知的問(wèn)題,以便于我們運(yùn)用熟知的知識(shí)、經(jīng)驗(yàn)和問(wèn)題來(lái)解決. (2)簡(jiǎn)單化原則:將復(fù)雜問(wèn)題化歸為簡(jiǎn)單問(wèn)題,通過(guò)對(duì)簡(jiǎn)單問(wèn)題的解決,達(dá)到解決復(fù)雜問(wèn)題的目的,或獲得某種解題的啟示和依據(jù). (3)和諧統(tǒng)一原則:轉(zhuǎn)化問(wèn)題的條件或結(jié)論,使其表現(xiàn)形式更符合數(shù)與形內(nèi)部所表示的和諧統(tǒng)一的形式;或者轉(zhuǎn)化命題,使其推演有利于運(yùn)用某種數(shù)學(xué)方法或符合人們的思維規(guī)律. (4)正難則反原則:當(dāng)問(wèn)題正面討論遇到困難時(shí),應(yīng)想到問(wèn)題的反面,設(shè)法從問(wèn)題的反面去探討,使問(wèn)題獲得解決. 體驗(yàn)高考 1.(2016課標(biāo)全國(guó)乙)已知等差數(shù)列{an}前9項(xiàng)的和為27,a10=8,則a100等于( ) A.100 B.99 C.98 D.97 答案 C 解析 由等差數(shù)列性質(zhì),知S9===9a5=27,得a5=3,而a10=8,因此公差d==1, ∴a100=a10+90d=98,故選C. 2.(2016課標(biāo)全國(guó)丙)已知?jiǎng)t( ) A.b0), 則a=ksin A,b=ksin B,c=ksin C. 代入+=中,有 +=,變形可得 sin Asin B=sin Acos B+cos Asin B=sin(A+B). 在△ABC中,由A+B+C=π,有sin(A+B)=sin(π-C)=sin C,所以sin Asin B=sin C. (2)解 由已知,b2+c2-a2=bc,根據(jù)余弦定理,有 cos A==,所以sin A==. 由(1)知,sin Asin B=sin Acos B+cos Asin B, 所以sin B=cos B+sin B. 故tan B==4. 高考必會(huì)題型 題型一 正難則反的轉(zhuǎn)化 例1 已知集合A={x∈R|x2-4mx+2m+6=0},B={x∈R|x<0},若A∩B≠?,求實(shí)數(shù)m的取值范圍. 解 設(shè)全集U={m|Δ=(-4m)2-4(2m+6)≥0}, 即U={m|m≤-1或m≥}. 若方程x2-4mx+2m+6=0的兩根x1,x2均為非負(fù), 則 所以使A∩B≠?的實(shí)數(shù)m的取值范圍為{m|m≤-1}. 點(diǎn)評(píng) 本題中,A∩B≠?,所以A是方程x2-4mx+2m+6=0①的實(shí)數(shù)解組成的非空集合,并且方程①的根有三種情況:(1)兩負(fù)根;(2)一負(fù)根和一零根;(3)一負(fù)根和一正根.分別求解比較麻煩,我們可以從問(wèn)題的反面考慮,采取“正難則反”的解題策略,即先由Δ≥0,求出全集U,然后求①的兩根均為非負(fù)時(shí)m的取值范圍,最后利用“補(bǔ)集思想”求解,這就是正難則反這種轉(zhuǎn)化思想的應(yīng)用,也稱(chēng)為“補(bǔ)集思想”. 變式訓(xùn)練1 若對(duì)于任意t∈[1,2],函數(shù)g(x)=x3+x2-2x在區(qū)間(t,3)上總不為單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是__________. 答案 解析 g′(x)=3x2+(m+4)x-2,若g(x)在區(qū)間(t,3)上總為單調(diào)函數(shù),則①g′(x)≥0在(t,3)上恒成立,或②g′(x)≤0在(t,3)上恒成立. 由①得3x2+(m+4)x-2≥0, 即m+4≥-3x在x∈(t,3)上恒成立, 所以m+4≥-3t恒成立,則m+4≥-1, 即m≥-5; 由②得m+4≤-3x在x∈(t,3)上恒成立, 則m+4≤-9,即m≤-. 所以使函數(shù)g(x)在區(qū)間(t,3)上總不為單調(diào)函數(shù)的m的取值范圍為-0,|a|≤1恒成立的x的取值范圍.
解 將原不等式整理為形式上是關(guān)于a的不等式(x-3)a+x2-6x+9>0.
令f(a)=(x-3)a+x2-6x+9.
因?yàn)閒(a)>0在|a|≤1時(shí)恒成立,所以
(1)若x=3,
則f(a)=0,不符合題意,應(yīng)舍去.
(2)若x≠3,
則由一次函數(shù)的單調(diào)性,
可得
即
解得x<2或x>4.
即x的取值范圍為(-∞,2)∪(4,+∞).
10.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m,n∈[-1,1],m+n≠0時(shí),有>0.
(1)證明f(x)在[-1,1]上是增函數(shù);
(2)解不等式f(x2-1)+f(3-3x)<0;
(3)若f(x)≤t2-2at+1對(duì)?x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.
解 (1)任?。?≤x1
- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué) 考前3個(gè)月知識(shí)方法專(zhuān)題訓(xùn)練 第一部分 知識(shí)方法篇 專(zhuān)題10 數(shù)學(xué)思想 第40練 轉(zhuǎn)化與化歸思想 高考 數(shù)學(xué) 考前 知識(shí) 方法 專(zhuān)題 訓(xùn)練 第一 部分 10 思想 40 轉(zhuǎn)化
鏈接地址:http://www.szxfmmzy.com/p-11831733.html