泵體零件機械加工工藝、毛坯和鉆12個螺紋底孔設計
泵體零件機械加工工藝、毛坯和鉆12個螺紋底孔設計,零件,機械,加工,工藝,毛坯,以及,12,十二,螺紋,羅紋,底孔,設計
摘自: 《制造工程與技術(機加工)》(英文版)
《Manufacturing Engineering and Technology—Machining》
機械工業(yè)出版社 2004年3月第1版
美 s. 卡爾帕基安(Serope kalpakjian)
s. 施密德(Steven R.Schmid) 著
20.9.1 Machinability Of Steels
Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels.
Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels.
Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability.
Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on the tool-side face of chips when machining leaded steels.
When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)—the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “l(fā)ow carbon,” a condition that improves their corrosion resistance.)
However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels.
Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds.
Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials.
The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use clean steels.
Carbon and manganese have various effects on the machinability of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation.
Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxygen has been shown to have a strong effect on the aspect ratio of the manganese sulfide inclusions; the higher the oxygen content, the lower the aspect ratio and the higher the machinability.
In selecting various elements to improve machinability, we should consider the possible detrimental effects of these elements on the properties and strength of the machined part in service. At elevated temperatures, for example, lead causes embrittlement of steels (liquid-metal embrittlement, hot shortness; see Section 1.4.3), although at room temperature it has no effect on mechanical properties.
Sulfur can severely reduce the hot workability of steels, because of the formation of iron sulfide, unless sufficient manganese is present to prevent such formation. At room temperature, the mechanical properties of resulfurized steels depend on the orientation of the deformed manganese sulfide inclusions (anisotropy). Rephosphorized steels are significantly less ductile, and are produced solely to improve machinability.
20.9.2 Machinability of Various Other Metals
Aluminum is generally very easy to machine, although the softer grades tend to form a built-up edge, resulting in poor surface finish. High cutting speeds, high rake angles, and high relief angles are recommended. Wrought aluminum alloys with high silicon content and cast aluminum alloys may be abrasive; they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, since it has a high thermal coefficient of expansion and a relatively low elastic modulus.
Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment.
Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture, necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials.
Cobalt-based alloys are abrasive and highly work-hardening. They require sharp, abrasion-resistant tool materials and low feeds and speeds.
Wrought copper can be difficult to machine because of built-up edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leaded free-machining brass). Bronzes are more difficult to machine than brass.
Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric).
Molybdenum is ductile and work-hardening, so it can produce poor surface finish. Sharp tools are necessary.
Nickel-based alloys are work-hardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels.
Tantalum is very work-hardening, ductile, and soft. It produces a poor surface finish; tool wear is high.
Titanium and its alloys have poor thermal conductivity (indeed, the lowest of all metals), causing significant temperature rise and built-up edge; they can be difficult to machine.
Tungsten is brittle, strong, and very abrasive, so its machinability is low, although it greatly improves at elevated temperatures.
Zirconium has good machinability. It requires a coolant-type cutting fluid, however, because of the explosion and fire.
20.9.3 Machinability of Various Materials
Graphite is abrasive; it requires hard, abrasion-resistant, sharp tools.
Thermoplastics generally have low thermal conductivity, low elastic modulus, and low softening temperature. Consequently, machining them requires tools with positive rake angles (to reduce cutting forces), large relief angles, small depths of cut and feed, relatively high speeds, and
proper support of the workpiece. Tools should be sharp.
External cooling of the cutting zone may be necessary to keep the chips from becoming “gummy” and sticking to the tools. Cooling can usually be achieved with a jet of air, vapor mist, or water-soluble oils. Residual stresses may develop during machining. To relieve these stresses, machined parts can be annealed for a period of time at temperatures ranging from to (to), and then cooled slowly and uniformly to room temperature.
Thermosetting plastics are brittle and sensitive to thermal gradients during cutting. Their machinability is generally similar to that of thermoplastics.
Because of the fibers present, reinforced plastics are very abrasive and are difficult to machine. Fiber tearing, pulling, and edge delamination are significant problems; they can lead to severe reduction in the load-carrying capacity of the component. Furthermore, machining of these materials requires careful removal of machining debris to avoid contact with and inhaling of the fibers.
The machinability of ceramics has improved steadily with the development of nanoceramics (Section 8.2.5) and with the selection of appropriate processing parameters, such as ductile-regime cutting (Section 22.4.2).
Metal-matrix and ceramic-matrix composites can be difficult to machine, depending on the properties of the individual components, i.e., reinforcing or whiskers, as well as the matrix material.
20.9.4 Thermally Assisted Machining
Metals and alloys that are difficult to machine at room temperature can be machined more easily at elevated temperatures. In thermally assisted machining (hot machining), the source of heat—a torch, induction coil, high-energy beam (such as laser or electron beam), or plasma arc—is forces, (b) increased tool life, (c) use of inexpensive cutting-tool materials, (d) higher material-removal rates, and (e) reduced tendency for vibration and chatter.
It may be difficult to heat and maintain a uniform temperature distribution within the workpiece. Also, the original microstructure of the workpiece may be adversely affected by elevated temperatures. Most applications of hot machining are in the turning of high-strength metals and alloys, although experiments are in progress to machine ceramics such as silicon nitride.
SUMMARY
Machinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables.
譯文:
20.9.1 鋼的可機加工性
因為鋼是最重要的工程材料之一(正如第5章所示),所以他們的可機加工性已經(jīng)被廣泛地研究過。通過宗教鉛和硫磺,鋼的可機加工性已經(jīng)大大地提高了。從而得到了所謂的易切削鋼。
二次硫化鋼和二次磷化鋼 硫在鋼中形成硫化錳夾雜物(第二相粒子),這些夾雜物在第一剪切區(qū)引起應力。其結果是使切屑容易斷開而變小,從而改善了可加工性。這些夾雜物的大小、形狀、分布和集中程度顯著的影響可加工性?;瘜W元素如碲和硒,其化學性質(zhì)與硫類似,在二次硫化鋼中起夾雜物改性作用。
鋼中的磷有兩個主要的影響。它加強鐵素體,增加硬度。越硬的鋼,形成更好的切屑形成和表面光潔性。需要注意的是軟鋼不適合用于有積屑瘤形成和很差的表面光潔性的機器。第二個影響是增加的硬度引起短切屑而不是不斷的細長的切屑的形成,因此提高可加工性。
含鉛的鋼 鋼中高含量的鉛在硫化錳夾雜物尖端析出。在非二次硫化鋼中,鉛呈細小而分散的顆粒。鉛在鐵、銅、鋁和它們的合金中是不能溶解的。因為它的低抗剪強度。因此,鉛充當固體潤滑劑并且在切削時,被涂在刀具和切屑的接口處。這一特性已經(jīng)被在機加工鉛鋼時,在切屑的刀具面表面有高濃度的鉛的存在所證實。
當溫度足夠高時—例如,在高的切削速度和進刀速度下—鉛在刀具前直接熔化,并且充當液體潤滑劑。除了這個作用,鉛降低第一剪切區(qū)中的剪應力,減小切削力和功率消耗。鉛能用于各種鋼號,例如10XX,11XX,12XX,41XX等等。鉛鋼被第二和第三數(shù)碼中的字母L所識別(例如,10L45)。(需要注意的是在不銹鋼中,字母L的相同用法指的是低碳,提高它們的耐蝕性的條件)。
然而,因為鉛是有名的毒素和污染物,因此在鋼的使用中存在著嚴重的環(huán)境隱患(在鋼產(chǎn)品中每年大約有4500噸的鉛消耗)。結果,對于估算鋼中含鉛量的使用存在一個持續(xù)的趨勢。鉍和錫現(xiàn)正作為鋼中的鉛最可能的替代物而被人們所研究。
脫氧鈣鋼 一個重要的發(fā)展是脫氧鈣鋼,在脫氧鈣鋼中矽酸鈣鹽中的氧化物片的形成。這些片狀,依次減小第二剪切區(qū)中的力量,降低刀具和切屑接口處的摩擦和磨損。溫度也相應地降低。結果,這些鋼產(chǎn)生更小的月牙洼磨損,特別是在高切削速度時更是如此。
不銹鋼 奧氏體鋼通常很難機加工。振動能成為一個問題,需要有高硬度的機床。然而,鐵素體不銹鋼有很好的可機加工性。馬氏體鋼易磨蝕,易于形成積屑瘤,并且要求刀具材料有高的熱硬度和耐月牙洼磨損性。經(jīng)沉淀硬化的不銹鋼強度高、磨蝕性強,因此要求刀具材料硬而耐磨。
鋼中其它元素在可機加工性方面的影響 鋼中鋁和矽的存在總是有害的,因為這些元素結合氧會生成氧化鋁和矽酸鹽,而氧化鋁和矽酸鹽硬且具有磨蝕性。這些化合物增加刀具磨損,降低可機加工性。因此生產(chǎn)和使用凈化鋼非常必要。
根據(jù)它們的構成,碳和錳鋼在鋼的可機加工性方面有不同的影響。低碳素鋼(少于0.15%的碳)通過形成一個積屑瘤能生成很差的表面光潔性。盡管鑄鋼的可機加工性和鍛鋼的大致相同,但鑄鋼具有更大的磨蝕性。刀具和模具鋼很難用于機加工,他們通常再煅燒后再機加工。大多數(shù)鋼的可機加工性在冷加工后都有所提高,冷加工能使材料變硬并且減少積屑瘤的形成。
其它合金元素,例如鎳、鉻、鉗和釩,能提高鋼的特性,減小可機加工性。硼的影響可以忽視。氣態(tài)元素比如氫和氮在鋼的特性方面能有特別的有害影響。氧已經(jīng)被證明了在硫化錳夾雜物的縱橫比方面有很強的影響。越高的含氧量,就產(chǎn)生越低的縱橫比和越高的可機加工性。
選擇各種元素以改善可加工性,我們應該考慮到這些元素對已加工零件在使用中的性能和強度的不利影響。例如,當溫度升高時,鋁會使鋼變脆(液體—金屬脆化,熱脆化,見1.4.3節(jié)),盡管其在室溫下對力學性能沒有影響。
因為硫化鐵的構成,硫能嚴重的減少鋼的熱加工性,除非有足夠的錳來防止這種結構的形成。在室溫下,二次磷化鋼的機械性能依賴于變形的硫化錳夾雜物的定位(各向異性)。二次磷化鋼具有更小的延展性,被單獨生成來提高機加工性。
20.9.2 其它不同金屬的機加工性
盡管越軟的品種易于生成積屑瘤,但鋁通常很容易被機加工,導致了很差的表面光潔性。高的切削速度,高的前角和高的后角都被推薦了。有高含量的矽的鍛鋁合金鑄鋁合金也許具有磨蝕性,它們要求更硬的刀具材料。尺寸公差控制也許在機加工鋁時會成為一個問題,因為它有膨脹的高導熱系數(shù)和相對低的彈性模數(shù)。
鈹和鑄鐵相同。因為它更具磨蝕性和毒性,盡管它要求在可控人工環(huán)境下進行機加工。
灰鑄鐵普遍地可加工,但也有磨蝕性。鑄造無中的游離碳化物降低它們的可機加工性,引起刀具切屑或裂口。它需要具有強韌性的工具。具有堅硬的刀具材料的球墨鑄鐵和韌性鐵是可加工的。
鈷基合金有磨蝕性且高度加工硬化的。它們要求尖的且具有耐蝕性的刀具材料并且有低的走刀和速度。
盡管鑄銅合金很容易機加工,但因為鍛銅的積屑瘤形成因而鍛銅很難機加工。黃銅很容易機加工,特別是有添加的鉛更容易。青銅比黃銅更難機加工。
鎂很容易機加工,鎂既有很好的表面光潔性和長久的刀具壽命。然而,因為高的氧化速度和火種的危險(這種元素易燃),因此我們應該特別小心使用它。
鉗易拉長且加工硬化,因此它生成很差的表面光潔性。尖的刀具是很必要的。
鎳基合金加工硬化,具有磨蝕性,且在高溫下非常堅硬。它的可機加工性和不銹鋼相同。
鉭非常的加工硬化,具有可延性且柔軟。它生成很差的表面光潔性且刀具磨損非常大。
鈦和它的合金導熱性(的確,是所有金屬中最低的),因此引起明顯的溫度升高和積屑瘤。它們是難機加工的。
鎢易脆,堅硬,且具有磨蝕性,因此盡管它的性能在高溫下能大大提高,但它的機加工性仍很低。
鋯有很好的機加工性。然而,因為有爆炸和火種的危險性,它要求有一個冷卻性質(zhì)好的切削液。
20.9.3 各種材料的機加工性
石墨具有磨蝕性。它要求硬的、尖的,具有耐蝕性的刀具。
塑性塑料通常有低的導熱性,低的彈性模數(shù)和低的軟化溫度。因此,機加工熱塑性塑料要求有正前角的刀具(以此降低切削力),還要求有大的后角,小的切削和走刀深的,相對高的速度和工件的正確支承。刀具應該很尖。
切削區(qū)的外部冷卻也許很必要,以此來防止切屑變的有黏性且粘在刀具上。有了空氣流,汽霧或水溶性油,通常就能實現(xiàn)冷卻。在機加工時,殘余應力也許能生成并發(fā)展。為了解除這些力,已機加工的部分要在()的溫度范圍內(nèi)冷卻一段時間,然而慢慢地無變化地冷卻到室溫。
熱固性塑料易脆,并且在切削時對熱梯度很敏感。它的機加工性和熱塑性塑料的相同。
因為纖維的存在,加強塑料具有磨蝕性,且很難機加工。纖維的撕裂、拉出和邊界分層是非常嚴重的問題。它們能導致構成要素的承載能力大大下降。而且,這些材料的機加工要求對加工殘片仔細切除,以此來避免接觸和吸進纖維。
隨著納米陶瓷(見8.2.5節(jié))的發(fā)展和適當?shù)膮?shù)處理的選擇,例如塑性切削(見22.4.2節(jié)),陶瓷器的可機加工性已大大地提高了。
金屬基復合材料和陶瓷基復合材料很能機加工,它們依賴于單獨的成分的特性,比如說增強纖維或金屬須和基體材料。
20.9.4 熱輔助加工
在室溫下很難機加工的金屬和合金在高溫下能更容易地機加工。在熱輔助加工時(高溫切削),熱源—一個火把,感應線圈,高能束流(例如雷射或電子束),或等離子弧—被集中在切削刀具前的一塊區(qū)域內(nèi)。好處是:(a)低的切削力。(b)增加的刀具壽命。(c)便宜的切削刀具材料的使用。(d)更高的材料切除率。(e)減少振動。
也許很難在工件內(nèi)加熱和保持一個不變的溫度分布。而且,工件的最初微觀結構也許被高溫影響,且這種影響是相當有害的。盡管實驗在進行中,以此來機加工陶瓷器如氮化矽,但高溫切削仍大多數(shù)應用在高強度金屬和高溫度合金的車削中。
小結
通常,零件的可機加工性能是根據(jù)以下因素來定義的:表面粗糙度,刀具的壽命,切削力和功率的需求以及切屑的控制。材料的可機加工性能不僅取決于起內(nèi)在特性和微觀結構,而且也依賴于工藝參數(shù)的適當選擇與控制。
11
本科畢業(yè)設計開題報告
系別
機電工程系
專業(yè)
機械設計制造及其 自動化
班級
姓名
學號
聯(lián)系方式
題目
一、 選題背景
中國市場發(fā)展迅速,產(chǎn)品產(chǎn)出持續(xù)擴張,國家產(chǎn)業(yè)政策鼓勵產(chǎn)業(yè)向高技術產(chǎn)品方向發(fā)展,國內(nèi)企業(yè)新增投資項目投資逐漸增多。投資者對行業(yè)的關注越來越密切,這使得行業(yè)的發(fā)展需求增大。
因此可以看出社會與市場的需求量是非常大的,而且將會越來越大。所以通過創(chuàng)新生產(chǎn)出優(yōu)良的,提高它的穩(wěn)定性,安全性和使用性能就顯得十分必要了。
二、課題設計
2.1課題的內(nèi)容
為了提高生產(chǎn)率和經(jīng)濟性,為了能提高生產(chǎn)效益,我們必須通過分析零件,列出不同的方案,通過對比選擇更優(yōu)的加工方案,確定加工路線。歸納起來主要以下內(nèi)容:
(1)、完成泵體加工工藝與工裝設計的綜述,外文資料的翻譯(2000字 符);
(2)、完成泵體加工工藝路線的擬定(生產(chǎn)類型為中批);完成和一副鉆夾具的草圖;
(3)、根據(jù)擬定的泵體加工工藝路線和夾具草圖,完成所有參數(shù)、尺寸的計算、查表和確定;
(4)、完成整套工藝規(guī)程的設計以及副夾具的裝配圖與零件圖(折合2漲0 # 以上圖紙);
(5)、完成設計說明書(至少8000字以上)。
通過優(yōu)化設計和精密計算,生產(chǎn)出符合要求甚至優(yōu)于要求的泵體,從而提高的安全性和增強其使用性能,比如:降低機械工作時的噪聲,改善工作環(huán)境,有益于工作者的身心健康。
2.2課題的目的
(1)創(chuàng)新性的生產(chǎn)出符合要求的泵體,解決工程實際問題,提高生產(chǎn)效率
(2)通過創(chuàng)新設計,生產(chǎn)出滿足不同需求的泵體,解決市場需求
(3)掌握機械加工和裝配方面的基本理論知識
(4)鞏固學過的知識,包括:制圖知識,機械制造技術知識,CAD、UG軟件等
(5)掌握如何設計銑床夾具,鉆床夾具
(6)掌握制定零件加工工藝過程,產(chǎn)品裝配工藝過程方法
(7)學會分析影響加工質(zhì)量的原因,了解先進制造技術,想方設法改進技術
2.3課題的意義
機械加工所用的工藝裝備主要是刀具、夾具,以及計量器具和輔具,工藝裝備的選擇或設計是否合理,對工件加工的精度、表面質(zhì)量、制造成本和生產(chǎn)率等至關重要.對于一些幾何形狀復雜,或者精度很高,或者兩者兼而有之的零件,如果不使用專門的工藝裝備,根本就無法加工,即使不使用專門的工藝裝備能加工出來,生產(chǎn)效率也是極低的. 而且加工中心在生產(chǎn)實際中的應用已越來越廣泛,使得機械制造的理念與過程發(fā)生了顯著的變化.工藝裝備設計如果比較合理與先進,在保證加工精度和表面粗糙度的同時,還可以獲得高的生產(chǎn)率。
本課題主要研究的是泵體加工工藝和工裝設計. 通過綜合運用大學期間所學知識,編制泵體加工工藝過程, 分別設計鉆夾具、鉆夾具和銑夾具各一副,鞏固以前的所學知識,提高自身的能力,從而為今后踏上社會打好堅實的專業(yè)知識基礎。
三、課題研究現(xiàn)狀
3.1國外研究現(xiàn)狀
CAPP的開發(fā)、研制是從60年代末開始的,在制造自動化領域,CAPP的發(fā)展是最遲的部分。世界上最早研究CAPP的國家是挪威,始于1969年,并于1969年正式推出世界上第一個CAPP系統(tǒng)AUTOPROS;1973年正式推出商品化的AUTOPROS系統(tǒng)。 在CAPP發(fā)展史上具有里程碑意義的是CAM-I于1976年推出的CAM-I’S Automated Process Planning系統(tǒng)。取其字首的第一個字母,稱為CAPP系統(tǒng)。目前對CAPP這個縮寫法雖然還有不同的解釋,但把CAPP稱為計算機輔助工藝過程設計已經(jīng)成為公認的釋義
美國推出的CAPP課題到目前為止,已經(jīng)取得了長足的進步。作為CAPP中的關鍵技術之一——工序工步排序,工序工步排序是工藝設計與否的關鍵,也是工藝設計的難點之一。它在很大程序決定了CAPP系統(tǒng)的應用水平,同時也是衡量CAPP系統(tǒng)智能化和實用化程度的一個重要標志。最近幾年,研究人員對CAPP的工序工步排序理論與方法進行了廣泛的研究和深入的探索,將人工智能技術、人工神經(jīng)網(wǎng)絡,面向?qū)ο蠓椒ê吞卣骷夹g等引入到CAPP系統(tǒng)中。
3.2國內(nèi)研究現(xiàn)狀
國內(nèi)鉆井泵現(xiàn)狀輕使鉆井泵功率在9 55kw以下,主要配套于4000m以下鉆機,因此,輕便鉆井泵的市場前景基本依從于4000m以下鉆機的使用現(xiàn)狀和發(fā)展。根據(jù)2000年的統(tǒng)計,中國擁有鉆機1000余臺,占世界鉆機總量的32%,其中中石油集團公司擁有702臺。
目前中國泵體加工主要還是以小批量生產(chǎn)為準,對夾具的使用比較少,更不用說是組合夾具,都是通過工人們的劃線加工,和試切法加工,所以中國的泵體加工工藝工序細且長,裝夾的次數(shù)多,不能形成一條流水線生產(chǎn)的生產(chǎn)線。當然,在中國比較有實力的生產(chǎn)商使用了先進的工藝工裝和工裝夾具,但,還是脫離不了工序長、工時長、耗能大等問題,所以生產(chǎn)效率不高,工時長,產(chǎn)品的次品率高,產(chǎn)品的性能低,不利于市場的需求。在機械方面國內(nèi)的起步晚于國外,特別在制造工藝方面,現(xiàn)在國外廣泛采用高精密加工、精細加工、微細加工、微型機械和微米/納米技術、激光加工技術、電磁加工技術、超塑加工技術以及復合加工技術等新型加工方法。但是我國普及率不高,尚在開發(fā)、掌握之中。國內(nèi)的數(shù)控機床普及率還是很不高,我國尚處在單機自動化、剛性自動化階段,柔性制造單元和系統(tǒng)僅在少數(shù)企業(yè)使用。國內(nèi)在夾具的標準化、精密化、高效化和柔性化等四個方面尚處于起步階段。
四、課題設計方案
4.1設計方案選型與分析
由于泵體的管孔直徑遠大于40-50mm所以選擇毛坯為鑄件,首先鑄出3個孔
方案一:1、毛坯選擇泵體鑄件
2、以泵體管孔為粗基準粗設計鉆床夾具加工泵體的3個孔
3、鉆床精加工孔
4、以泵體分叉2個管腳作為基準設計銑床夾具初加工端面
5、精加工端面
方案二:1、毛坯選擇泵體鑄件
2、用組合雙面銑床粗加工的兩端面
3、精加工兩端面
4、以泵體管孔為粗基準粗設計鉆床夾具加工泵體的12個孔(2個面)
4.2方案的確定
選擇方案二:先加工兩個端面,由于先切除了毛坯的表面凹凸不平和表面夾砂等缺陷,在加工分布在平面上的孔時,劃線找正方便。而且鉆刀開始鉆孔時不會因為端面有高低不平而產(chǎn)生沖擊振動,損壞刀刃。泵體的3個孔系屬于同軸孔系,需先確定基準平面后保證3孔的中心線在同一水平面,保證中心線的裝配精度要求。因此選擇先確定面再確定孔,先分別粗加工3孔后再精加工主要考慮加工時產(chǎn)生的切削熱變形,粗加工時切削量較大,加上孔對裝配的精度要求采取粗加工精加工分開,有利于減小由于加工熱變形產(chǎn)生的誤差
4.3方案的特點及創(chuàng)新
由于零件孔對與裝配精度的需求,加工平面時應減小裝甲保證兩面的位置精度,所以采用雙面銑的組合專用機床,再在鉆床對孔進行加工。這樣可以減少工裝夾具的設計量,同時可以保證上下端面的平行度要求,同時也保證加工孔的需求,有利于校正毛坯孔的精度
五、預期成果
本次設計的零件為中批生產(chǎn),設計工藝與工裝有利于保證生產(chǎn)的精度要求,同時減小夾具的設計量,規(guī)范化生產(chǎn),提高加工效率。
六、設計主要步驟
1緒論
2.泵體工藝規(guī)程設計
2.1零件的分析
2.1.1零件的作用
2.1.2零件的工藝分析
2.2箱體零件加工的主要問題
2.2.1主要加工問題分析
2.2.2孔和平面加工順序
2.2.3孔系加工方案選擇
2.3加工定位基準選擇
2.3.1粗基準選擇
2.3.2精基準選擇
2.4工藝路線的確定
2.5加工余量工序,毛坯尺寸的選擇
2.6加工工時確定
2.7小結
3.專用夾具設計
3.1鉆夾具設計
3.1.1工件夾緊分析
3.1.2定位方案分析和定位基準選擇
3.1.3定位元件的設計
3.1.4定位誤差分析
3.1.5切削力計算與夾緊力分析
3.1.6鉆套支架及家具體設計
3.1.7小結
3.2鉆夾具設計
3.2.1工件夾緊分析
3.2.2定位方案分析和定位基準選擇
3.2.3定位元件設計
3.2.4定位誤差分析
3.2.5切削力計算與夾緊力分析
3.2.6鉆套與鉆模板設計
3.2.7小結
4結論
參考文獻
致謝
附錄一:外文翻譯
附錄二:文獻綜述
七、進度計劃
序號
任務名稱
開始時間
結束時間
1
選題
2
查閱中、外文獻資料,外文資料翻譯,確定系統(tǒng)設計方案
3
開題
4
進行畢業(yè)設計
5
中期檢查
6
上交畢業(yè)設計正稿打印版及電子材料,畢業(yè)設計及設計說明書光盤,完成畢業(yè)答辯ppt
7
畢業(yè)答辯
七、參考文獻
[1] 王先逵,機械制造工藝學(第二版)。北京:機械工業(yè)出版社2006.1
[2] 陸劍中,孫家寧,金屬切削原理與刀具。北京:機械工業(yè)出版社 2005.1
[3] 梁旭坤,焦建雄,機械制造基礎(公差,配合,材料熱加工分冊)。長沙:中南大學出版社 2006.6
[4] 李益民,機械制造工藝設計簡明手冊。北京:機械工業(yè)出版社
[5] 龔定安等主編,《機床夾具設計》,西安交通大學出版社 1999
[6] 數(shù)字化手冊編委會,《設計夾具設計手冊》,機械工業(yè)出版社 2009.2
[7] 張世友,箱體類零件加工工藝分析。哈爾濱技師學院,哈爾濱,科技信息2010.2(17)
[8] 王凡 宋建新主編,《實用機械制造工藝設計手冊》,機械工業(yè)出版社2008.5
附錄:文獻綜述與外文翻譯
指導教師意見:
指導教師簽名: 年 月 日
教研室審核意見:
教研室主任簽名: 年 月 日
備注:本開題報告須裝入學生的畢業(yè)設計(論文)檔案袋存檔。
- 7 -
收藏