購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
英文翻譯原文:
(一)BORING AND BORING MACHINES
As carried out on a lathe, boring produces circular internal profiles in hollow work-pieces or on a hole made by drilling or another process, Boring is done with cutting tools that are similar to those used in turning. Because the boring bar has to reach the full length of the bore, tool deflection and, therefore, maintainance of dimensional accuracy can be a significant problem.
The boring bar must be sufficiently stiff—that is, made of a material with high elastic modulus, such as tungsten carbide –to minimize deflection and avoid vibration and chatter. Boring bars have been designed with capabilities for damping vibration.
Although boring operations on relatively small work-pieces. Can be carried out on a lathe, boring mills are used for large work-pieces. These machines are either vertical or horizontal, and are capable of performing operations such as turning, facing, grooving, and chamfering. A vertical boring machine is similar to a lathe but has a vertical axis of work-piece rotation.
The cutting tool (usually a single point made of M-2 and M-3 high-speed steel and C-7 and C-8 carbide) is mounted on the tool head, which is capable of vertical movement (for boring and turning) and radial movement (for facing), guided by the cross-rail. The head can be swiveled to produce conical (tapered) surfaces.
In horizontal boring machine, the work-piece is mounted on a table that can move horizontally in both the axial and radial directions. The cutting tool is mounted on a spindle that rotates in the headstock, which is capable of both vertical and longitudinal movements. Drills, reamer, taps, and milling cutters can also be mounted on the machine spindle.
Boring machine are available with a variety of features. Although work-piece diameters are generally 1 m-4 m(3ft-12ft),work-piece as large as 20 m(60ft) can be machined in some vertical boring machines. Machine capacities range up to 150 kw (200hp).these machines are also available with computer numerical controls, which allow all movements to be programmed. With such controls, little operaror involvement is required and consistency and productivity are improved. Cutting speeds and feeds for boring are similar to those for turning.(For capabilities of boring operations)
Jig borers are vertical boring machines with high –precision bearings. Although they are available in various sizes and used in tool rooms for making jigs and fixtures, they are now being replaced by more versatile numerical control machines.
Design considerations for boring. Guidelines for efficient and economical boring operations are similar to those for turning. Additionally, the following factors should be considered:
a. Whenever possible, through holes rather than blind holes should be specified.(The term blind hole refers to a hole that does not go though the thickness of the work-piece )
b. The greater the length –to –bore-diameter ratio, the more difficult it is to hold dimensions because of the deflections of the boring bar due to cutting forces.
c. Interrupted internal surfaces should be avoided.
(2)Fundamentals of Machine Tools
In many cases products form the primary forming processes must undergo further refinements in size and surface finish to meet their design specifications. To meet such precise tolerances the removal of small amounts of material is needed. Usually machine tools are used for such operation.
In the United States material removal is a big business-in excess of $ per year, including material, labor, overhead, and machine-tool shipments, is spent. Since 60 percent of the mechanical and industrial engineering and technology graduates have something connection with the machining industry either through sale, design, or operation of machine shops, or working in related industry, it is wise for an engineering student to devote some time in his curriculum to studying material removal and machine tools.
A machine tool provides the means for cutting tools to shape a workpiece to required dimensions; the machine supports the tool and the workpiece in a controlled relationship through the functioning of its basic members, which are as follow:
(a) Bed, Structure or Frame. This is the main member which provides a basis for, and a connection between, the spindles and slides; the distortion and vibration under load must be kept to a minimum.
(b) Slides and Sideways. The translation of a machine element (e.g. the slide) is normally achieved by straight-line motion under the constraint of accurate guiding surfaces (the slideway).
(c) Spindles and Bearings. Angular displacements take place about an axis of rotation; the position of this axis must be constant within extremely fine limits in machine tools, and is ensured by the provision of precision spindles and bearings.
(d) Power Unit. The electric motor is the universally adopted power unit for machine tools. By suitably positioning individual motors, belt and gear transmissions are reduced to a minimum.
(e) Transmission Linkage. Linkage is the general term used to denote the mechanical, hydraulic, pneumatic or electric mechanisms which connect angular and linear displacements in defined relationship.
There are two broad divisions of machining operations:
(a) Roughing, for which the metal removal rate, and consequently the cutting force, is high ,but the required dimensional accuracy relatively low .
(b) Finishing, for which the metal removal rate, and consequently the cutting force, is low, but the required dimensional accuracy and surface finish relatively high .
It follows that static loads and dynamic loads, such as result form an unbalanced grindingwheel, are more significant in finishing operations than in roughing operations, The degree of precision achieved in any machining process will usually be influenced by the magnitude of the deflections, which occur as a result of the force acting.
Machine tool frames are generally made in cast iron, although some may be steel casting or mild-steel fabrications. Cast iron is chosen because of its cheapness, rigidity, compressive strength and capacity for damping the vibrations set-up in machine operations, To avoid massive sections in castings, carefully designed systems of ribbing are used to offer the maximum resistance to bending and torsional stresses. Two basic types of ribbing are box and diagonal. The box formation is convenient to produce, apertures in walls permitting the positioning and extraction of cores. Diagonal ribbing provides greater torsional stiffness and yet permits swarf to fall between the sections; it is frequently used for lathe beds.
The slides and slideways of a machine tool locate and guide members which move relative to each other, usually changing the position of the tool relative to workpiece .The movement generally takes the form of translation in a straight line, but is sometimes angular rotation, e.g. tilting the wheel-head of a universal thread-grinding machine to an angle corresponding which the helix angle of the workpiece thread. The basic geometric elements of slides are flat, vee, dovetail and cylinder. These elements may be used separately or combined in various ways according to the applications . Features of slideways are as follows :
(a) Accuracy of Movement. Where a slide is to be displaced in a straight line, this line must lie in two mutually perpendicular planes and there must be no slide rotation. The general tolerance for straightness of machine tool slideways is 0~0.02mm per 1000mm; on horizontal surfaces this tolerance may be disposed so that a convex surface results, thus countering the effect of "sag" of the slideway.
(b) Means of Adjustment. To facilitate assembly, maintain accuracy and eliminate "play" between sliding members after wear has taken place, a strip is sometimes inserted in slides. This is called a gibstrip. Usually, the gib is retained by socket-head screws passing through elongated slots;and is adjusted by grub-screws secured by lock nuts.
(c) Lubrication. Slideways may be lubricated by either of the following systems:1)Intermittently through grease or oil nipples, a method suitable where movements are infrequent and speed low.
2) Continuously e.g. by pumping through a metering valve and pipe-work to the point of application; the film of oil introduced between surfaces by these means must be extremely thin to avoid the slide “floating”.If sliding surfaces were optically flat oil would be squeezed out,resulting in the surfaces sticking. Hence in practice slide Sill"faces are either grourld using the edge of a cup wheel,or scraped. Both processes produee minulte surface depressions,which retain‘‘pocket” of oil, and complete separation of the parts may not occur at all points.
(d) Protection.To maintain slideways in good order, the following conditions must be met:
1) Ingress of foreign matter,e.g.swarf,must be prevented. Where this is no possible,it is desirable to have a form of slideway,which does not retain swarf,e.g. the inverted vee.
2) Lubricating oil must be retained.The adhesive property of oil for use on vertical or inclined slide surface is important; oils are available which have been specially developed for this purpose. The adhesiveness of oil also preverts it being washed away by cutting fluids.
3) Accidental damage must be prevented by protective guards.
譯文:
(一)鏜削加工和鏜床
像車床加工零件一樣,鏜床能在中空的工件或由鉆削加工或其它工藝所加工的孔上進行內輪廓圓的加工。鏜削是由那些類似車削的刀具完成的。因為鏜頭必須達到鏜桿的全長,刀具將發(fā)生彎曲,因此,尺寸精度的保持性成為了一個重大問題。
鏜桿必須有足夠的剛度——刀桿是由較高彈性模量的材料制造的,比如碳化鎢(硬質合金)——去減小彎曲和避免搖動和振動。鏜桿被設計有減振的能力。
鏜床既能加工在車床上加工的較小工件,鏜銑床又能加工巨大的工件。這類機械既有立式的又有臥式的并且能夠完成如:車削、車端面、切槽、和倒角。一臺立式的鏜床類似一臺車床,但它有一根垂直的工件旋轉軸。
刀具(通常用于切削的單獨切削點是由M-2和M-3高速鋼和C-8硬質合金制造的)被安裝于能垂直運動(用于鏜削和車削)和徑向運動(用于車端面)并由十字導軌導向的刀頭上。刀頭能夠旋轉去加工圓錐形表面。
在臥式鏜床上工件被裝夾在能在水平面內兩個軸向和徑向上移動的工作臺上,刀具被安裝于能做垂直和縱向兩方向上運動的主軸箱上。鉆頭、鉸刀、螺紋刀和銑刀都能安裝于機床主軸上。
鏜床具有許多優(yōu)良的性能,它所加工工件的直徑是1m-4m(3ft-12ft),工件尺寸達到20m(60ft)的可在專用的立式鏜床上加工。機床功率范圍可達到150kw(200hp)。這些可用于所有運動都能編程的數(shù)字控制加工。利用這些控制,只需要很少的相關操作,并且穩(wěn)定性和生產率大大提高了。鏜床的切削速度和進給速度和車床比較相似。
坐標鏜床是屬于具有較高精度支撐的立式鏜床。盡管它們可用于各類尺寸的工件加工和擁有夾緊合安裝的刀具空間。它們正被多功能的數(shù)控機床取代。
鏜床的設計要求:導軌的效率,類似于車削的經濟型操作,另外,應該考慮以下因素:
a.無論何時,應盡可能注意是加工通孔而并盲孔。(盲孔系列是指那些沒有穿國工件厚度的孔)
b.應該控制徑向進給速率,很難去支撐徑向,因為切削力引起鏜桿的彎曲變形。
c.應該避免交叉的內表面加工。
(2)機床基礎
為了滿足規(guī)定的設計規(guī)格,大多數(shù)情況下初步加工的產品都必須再經過進一步的尺寸和表面的精加工。要達到這樣的精確規(guī)定公差的要求,少量材料需要被切除掉,而機床通常就是用于此種操作。
在美國,材料切除是一項大業(yè)務——每年這方面的支出超過36×109美元,包括材料、勞力和機床運輸。60%的機械工程和工業(yè)工程畢業(yè)生都通過貿易、設計、機械修理工廠,或通過在相關行業(yè)工作而與機械工業(yè)密不可分,因而如果他們花費一定的時間精力來學習這個領域中的材料切除和機床技術的話會是很明智的選擇。
機床提供切割工具的方式,以使工件成型,達到規(guī)定的尺寸;此種機器依靠其基礎部件的運作來掌握工具和工件之間的聯(lián)系。其基礎部件的運作如下:
①. 床身、構造和框架。這三種主要的部件為錠子和滑移的基礎,并將它們聯(lián)系起來;操作中的變形和震動必須盡量避免。
②. 滑移與滑軌。機械部件(如滑移)的轉換通常是通過在精密的指導表面(滑軌)的控制下做直線運動而完成的。
③. 錠子與軸承。角位移是圍繞一個旋轉軸線發(fā)生的;這個轉軸的位置必須一直處于嚴格精確的限制之中,并由精密錠子和軸承提供保障。
④. 動力儀器。電動機是被廣泛應用于機床的動力儀器。通過將各電動機放置于合適的位置,傳輸帶和齒輪運輸會被降低到最低限度。
⑤. 傳輸聯(lián)接。聯(lián)接是一個通常用來指機械驅動的、水壓驅動的、氣壓驅動的和電力驅動的機械裝置,將有角移置和直線移置聯(lián)系起來,使其符合規(guī)定。
加工操作大體上分為兩類:
① . 粗加工。其金屬切除率高且由此導致的切除力較大,但規(guī)定的尺寸精度相對較低。
② . 精加工。其金屬切除率低且由此導致的切除力較小,但規(guī)定的尺寸精度相對較高。
靜載荷及動載荷,如處于非平衡狀態(tài)的砂輪所導致的結果,自然在精加工方面比在粗加工操作方面更為重要。任何加工過程所達到的精確度通常會受到偏差大小的影響,這種影響是是操作動力的結果。
機床框架通常由鑄鐵制造,雖然有些機床可能為鋼鑄件或低碳鋼結構。選擇鑄鐵是因為其價格、硬度、耐壓強度及減少加工操作中的震動的能力。為了避免鑄件出現(xiàn)輕重不均的部分,精心設計的肋材構架系統(tǒng)被采用,最大可能地抵抗造成彎曲和變形的壓力。
兩種肋材構架分別為箱形和對角線形。箱形結構便于生產,因為壁上的孔徑允許核心的定位和抽取。對角線楞條配置則提供更大的抗紐剛度并允許金屬屑從部件當中的孔隙落出,因此經常被用于機床。
車床的滑移和滑軌指引并且為相互影響運動的部件定位,通常根據工件更改車床的位置。運動一般采取直線運動的形式,但有時是旋轉,例如,對應于工件的螺紋螺旋角方向而轉動萬能螺紋磨床上的砂輪頭的一個角度。基本的對稱滑移部件為扁平、V形、燕尾槽形及汽缸形。這些部件既可單獨使用又可根據用途以不同方式組合使用?;壍奶卣魅缦拢?
1 如果滑移要在一條直線上移動位置,這條直線必須位于兩個相互垂直的平面之間且必須沒有滑動旋轉。
2 機床滑軌的直線性規(guī)定公差一般介于0~0.02mm/100mm之間;在水平表面此公差可以被處理以得到凸形表面這樣就可以抵消滑軌下沉的作用。
3 潤滑油?;壙赡鼙灰韵聝煞N系統(tǒng)中的任何一種潤滑:
1. 間歇通過油脂或油嘴潤滑。這種方法適合運作不頻繁和速度不高的情況。
2. 持續(xù)潤滑,如通過計量閥和管道根據需要抽取;通過這些方法操作的表面之間的潤滑油薄膜必須非常薄,以避免滑移漂浮。如果滑移表面是鏡平面,油就會被擠出,使表面粘接。因此實際操作中滑移表面不是被杯狀輪邊緣壓平,就是被刮去。兩種操作過程都會產生微小的表面凹痕,這種凹痕會導致少量潤油存留,而且零件的完全分離可能不會總是發(fā)生;因此,滑移的正確定位得到保留。
4 保護。為了維護滑軌,使其正常工作,必須滿足如下條件:
1. 必須避免外來物質如鐵屑的進入。如果這種條件不可能滿足,則應該采用不會滯留鐵屑的,如倒V形的滑移。
2. 潤滑油必須保留。潤滑油在垂直的或傾斜滑移表面上的粘性特質非常重要;特制的潤滑油市場有售。潤滑油的粘性同時能防止其被切削液沖走。
3. 必須防止由保護裝置導致的意外損壞。
中文摘要
內容 動力箱,各種工藝切削頭和動力滑臺是組合機床完成切削主運動或進給運動的動力部件。其中還能同時完成切削主運動和進給運動的動力頭。而只能完成進給運動的動力部件稱為滑臺。固定在動力箱上的主軸箱是用來布置切削主軸,并把動力箱輸出軸的旋轉運動傳遞給各主軸的切削刀具,由于各主軸的位置與具體被加工零件有關,因此主軸箱必須根據被加工零件設計,不能制造成完全通用部件,但其中很多零件(例如:主軸,中間軸,齒輪和箱體等)是通用的。床身,側底座,中間底座等是組合機床的支承部件,起著機床的基礎骨架作用。組合機床的剛度和部件之間的精度保持性,主要是由這些部件保證。移動的或回轉的工作臺是多工位組合機床的主要部件之一,它起著轉換工位和輸送工位的作用,因此它們的直線運動和回轉運動的重復定位精度直接影響組合機床的加工精度。除了上述主要部件之外,組合機床還有各種控制部件,主要是指揮機床按順序動作,以保證機床按規(guī)定的程序進行工作。
關鍵詞: 組合機床,動力箱,滑臺,主軸箱,底座
Chinese abstract
Content The power box, each kind of craft cutting head and the power slipway is the aggregate machine-tool completes cuts the host movement or enters for the movement power part. Also can simultaneously complete cuts the host movement and enters for the movement power head. But only can complete is called for the movement power part slipway. Fixes the headstock is uses for in the power box to arrange the cutting main axle, and transmits the power box output shaft rotary motion for various main axles cutting tool, because various main axles position with makes concrete is processed the components related, therefore the headstock must act according to is processed the components design, cannot make creates the completely general part, but very many components (for example: The main axle, the intermediate shaft, the gear and the box body and so on) is general.The lathe bed, leans the foundation, the middle foundation and so on is the aggregate machine-tool supporting part, is playing the engine bed foundation skeleton role. Between the aggregate machine-tool rigidity and the part precision retentivity, mainly is guaranteed by these parts. Motion or the rotation work table is one of multiplex position aggregate machine-tool major components, it plays is transforming the location and transports the location the role, therefore their translation and gyroscopic motion repetition pointing accuracy direct influence aggregate machine-tool processing precision.Besides the above major component, the aggregate machine-tool also has each kind of control portion, mainly is directs the engine bed according to the smooth movement, guaranteed the engine bed carries on the work according to the stipulation procedure.
Key word Aggregate machine-tool, power box, slipway, headstock, foundation
目錄
第一章 緒論 1
1.1課題的來源及意義 1
1.2課題應達到的要求 1
1.3組合機床的組成及特點 1
第二章 組合鏜床設計 2
2.1 機床加工工藝分析 2
2.1.1機床的工藝任務 2
2.1.2加工方案分析 2
2.2 機床的總體方案設計 3
2.2.1確定機床的布局形式 3
2.2.2確定機床的傳動方案 3
2.2.3機床的總體方案設計 3
2.2.4繪制加工示意圖 5
2.2.5繪制機床聯(lián)系總圖 6
2.2.6編制機床生產率計算卡 8
2.3 主要部件設計 10
2.3.1繪制多軸箱原始依據圖 10
2.3.2主軸,齒輪的確定及動力計算 11
2.3.3傳動件設計 12
2.4 機床專用夾具設計 18
2.4.1主明確設計任務,收集分析原始資料 18
2.4.2確定夾具的結構方案 19
2.5 傳動件設計 20
2.5.1驗算齒輪接觸強度 20
2.5.2驗算主軸的扭轉強度 22
結論 24
致謝 25
參考文獻 26
電火花鏜磨電火花鏜磨機設計
目 錄
第1章 緒 論 3
1.1 項目的研究意義 3
1.2 國內外的科技現(xiàn)狀 3
1.3設計產品的用途和應用領域 4
1.4 設計方案 5
1.4.1 設計目標、研究內容和擬解決的關鍵問題 5
1.4.2 設計方案 5
1.4.3 題目的可行性分析 5
1.4.4本項目的創(chuàng)新之處 5
第2章 電火花鏜磨機總體設計 6
2.1確定電機 6
2.2電火花鏜磨機布局 6
第3章 主傳動系統(tǒng)設計 8
3.1擬定結構 8
3.2分配降速比 8
3.3繪制轉速圖 9
3.4確定齒輪齒數(shù) 10
3.5確定帶輪直徑 11
3.6驗算主軸轉速誤差 11
3.7繪制傳動系統(tǒng)圖 13
第4章 估算傳動件參數(shù)并確定其結構尺寸 15
4.1確定傳動件轉速 15
4.2確定主軸支承軸頸尺寸 16
4.3估算傳動軸直徑 16
4.4估算傳動齒輪模數(shù) 17
4.5制動器的選擇與計算 19
4.6普通V帶的選擇與計算 19
4.7幾何計算 21
第5章 結構設計 24
5.1帶輪設計 24
5.2齒輪塊設計 24
5.3軸承選擇 24
5.4操縱機構 24
5.5潤滑系統(tǒng)設計 24
5.6密封裝置 25
第6章 傳動件驗算 26
6.1驗算軸彎曲剛度 26
6.2花鍵鍵側擠壓應力計算 27
6.3驗算齒輪模數(shù) 28
6.4滾動軸承驗算 33
6.5尾柱設計 36
結 論 38
致 謝 39
第1章 緒 論
1.1 項目的研究意義
在當今時代,任何一個具備完整工業(yè)體系的國家,都會有相當數(shù)量的制造業(yè),如汽車、機車、電力、船舶、航空航天、冶金礦山、石油化工、電火花鏜磨機工具、通信、輕工、建材、家電、食品、儀器、儀表等。上述這些部門大多與機械工業(yè)有關,有的是實質上就是機械工業(yè),它們都是用機械設備制造各種各樣的產品。所以說機械工業(yè)是國民經濟的裝備部,是國民經濟的先導,是國家重要的基礎工業(yè)。如果一個國家的機械工業(yè)水平不高,它生產的產品在國際市場上是很難有競爭力的,也是很難立于世界民族之林的!美國是世界工業(yè)強國,70年代美國曾認為制造業(yè)是“夕陽工業(yè)”,經濟重心應由制造業(yè)轉向高科技產業(yè)及服務業(yè)等第三產業(yè)。科研重理論成果,不重視實際應用,政府不支持產業(yè)技術,使美國制造業(yè)產生衰退。而同期日本重視制造技術,重視高素質人才的培養(yǎng),注重將高科技成果應用于制造業(yè),加之嚴密的社會組織,很快把原來美國占絕對優(yōu)勢的產業(yè)如汽車、照相機、家電、電火花鏜磨機、復印機、半導體等變成自己的主導產業(yè),占領了世界市場。這很快引起了美國政界、科技界、企業(yè)界有識之士的關注。為此,80年代后期,美國政府和企業(yè)迅速組織調查,MIT在調查報告中指出:“一個國家要想生活的好,必須生產的好。振興經濟的出路在于振興制造業(yè)”,當前國際間“經濟的競爭歸根到底是制造技術和制造能力的競爭”。
鏜床是一種主要用鏜刀在工件上加工孔的電火花鏜磨機。通常用于加工尺寸較大、精度要求較高的孔,特別是分布在不同表面上、孔距和位置精度要求較高的孔,如各種箱體、汽車發(fā)動機缸體等零件上的孔。所以對其進行合理設計,其意義十分重大。
1.2 國內外的科技現(xiàn)狀
國外現(xiàn)狀:
德國政府一貫重視電火花鏜磨機工業(yè)的重要戰(zhàn)略地位,在多方面大力扶植。特別講究“實際”與“實效”,堅持“以人為本”,師徒相傳,不斷提高人員素質。在發(fā)展大量大批生產自動化的基礎上,于1956年研制出第一臺數(shù)控電火花鏜磨機后,一直堅持實事求是,講求科學精神,不斷穩(wěn)步前進。德國特別注重科學試驗,理論與實際相結合,基礎科研與應用技術科研并重。企業(yè)與大學科研部門緊密合作,對用戶產品、加工工藝、電火花鏜磨機布局結構、數(shù)控電火花鏜磨機的共性和特性問題進行深入的研究,在質量上精益求精。德國的數(shù)控電火花鏜磨機質量及性能良好、先進實用、貨真價實,出口遍及世界。尤其是大型、重型、精密數(shù)控電火花鏜磨機。德國特別重視數(shù)控電火花鏜磨機主機及配套件之先進實用,其機、電、液、氣、光、刀具、測量、數(shù)控系統(tǒng)、各種功能部件,在質量、性能上居世界前列。如西門子公司之數(shù)控系統(tǒng)和Heidenhain公司之精密光柵,均為世界聞名,競相采用。
國內現(xiàn)狀:
在產品開發(fā)上,國內支柱企業(yè)重點放在數(shù)控電火花鏜磨機上,年生產電火花鏜磨機臺數(shù)和數(shù)控電火花鏜磨機所占比例逐年上升。據不完全統(tǒng)計,2004年鉆鏜床行業(yè)共開發(fā)新產品81種,其中數(shù)控電火花鏜磨機新產品61種,占開發(fā)新產品的近80%。數(shù)控產品中在國內具有領先水平的有36種,包括車銑鏜等復合加工中心,高速(最高轉速在15000r/min至36000r/min)立、臥式加工中心、高速銑削中心、大型臥式加工中心(工作臺尺寸2000mm×4000mm及以上)、龍門式加工中心(龍門五面、龍門五軸)、五軸聯(lián)動加工中心、高精度數(shù)控電火花鏜磨機等。
1.3設計產品的用途和應用領域
該產品主要用于加工尺寸較大、精度要求較高的孔,特別是分布在不同表面上、孔距和位置精度要求較高的孔,如各種箱體、汽車發(fā)動機缸體等零件上的孔。臥式鏜床的主軸水平布置并可軸向進給,主軸箱沿前立柱導軌垂向運動,工作臺可縱向或橫向運動,可鉆、擴、鉸、和鏜孔及車削內、外螺紋、攻螺紋、車外圓柱面、端面及用端銑刀、圓柱銑刀銑平面等。
1.4 設計方案
1.4.1 設計目標、研究內容和擬解決的關鍵問題
設計目標:
完成對電火花鏜磨電火花鏜磨機設計柱設計
研究內容:
(1)電火花鏜磨機主軸箱設計
(2)電火花鏜磨機尾柱設計
1.4.2 設計方案
對電火花鏜磨電火花鏜磨機設計柱設計
1.4.3 題目的可行性分析
當今世界,工業(yè)發(fā)達國家對電火花鏜磨機工業(yè)高度重視,競相發(fā)展機電一體化、高精、高效、高自動化先進電火花鏜磨機,以加速工業(yè)和國民經濟的發(fā)展。中國加入WTO后,正式參與世界市場激烈競爭,今後如何加強電火花鏜磨機工業(yè)實力、加速數(shù)控電火花鏜磨機產業(yè)發(fā)展,實是緊迫而又艱巨的任務。
1.4.4本項目的創(chuàng)新之處
對主軸箱傳動進行優(yōu)化設計,提高生產效率和降低生產成本。
第2章 電火花鏜磨機總體設計
該型號鏜床是一種主要用鏜刀在工件上加工孔的電火花鏜磨機。通常用于加工尺寸較大、精度要求較高的孔,特別是分布在不同表面上、孔距和位置精度要求較高的孔,如各種箱體、汽車發(fā)動機缸體等零件上的孔。臥式鏜床的主軸水平布置并可軸向進給,主軸箱沿前立柱導軌垂向運動,工作臺可縱向或橫向運動,可鉆、擴、鉸、和鏜孔及車削內、外螺紋、攻螺紋、車外圓柱面、端面及用端銑刀、圓柱銑刀銑平面等。
根據電火花鏜磨機的精度等級和工作性能要求,構思主傳動系統(tǒng),初步擬定采用集中傳動,采用三相異步電動機,經分級變速箱實現(xiàn)主軸所需的各級轉速和轉速范圍。
(1)確定變速組傳動副數(shù)目
實現(xiàn)18級主軸轉速變化的傳動
2.1確定電機
根據功率要求查表選取電動機型號
Y160M-4 11kw n=1460r/min
2.2電火花鏜磨機布局
①確定結構方案
②主軸傳動系統(tǒng)采用普通V帶,齒輪傳動
③傳動型式采用集中傳動
④主軸正反轉方向,制動采用能耗制動器
⑤變速齒輪系統(tǒng)采用多聯(lián)滑移齒輪
⑥潤滑系統(tǒng)采用飛濺油潤滑
(2)布局
采用臥式鏜床常規(guī)的布局型式,電火花鏜磨機主要組成部件有床身、前立柱、主軸箱、工作臺和后立柱等。此次設計主傳動系統(tǒng)包括Ⅰ、Ⅱ、Ⅲ、Ⅳ軸及相關部件。
第3章 主傳動系統(tǒng)設計
3.1擬定結構
(1)確定變速組傳動副數(shù)目:
18=3×3×2
(2)確定基本組和擴大組:
18=3×3×2
(3)驗算最后擴大組變速范圍:
所以符合設計原則
3.2分配降速比
該鏜床主軸系統(tǒng)共設有四個傳動組,其中有一個是帶傳動,根據降速比分配應“前快后慢”的原則,確定各傳動組最小傳動比:
=
3.3繪制轉速圖
由1.26=1.06,查表4.2-1(文獻13)轉速有31.5、40、50、63、80、100、125、160、200、250、315、400、500、630、800、1000、1250、1600。
3.4確定齒輪齒數(shù)
利用查表法及各對齒數(shù)比求出個傳動組齒輪齒數(shù)。
變速組
一
二
三
齒數(shù)和
90
95
99
齒輪
齒數(shù)
40
50
35
55
30
60
53
42
37
58
23
72
66
33
20
79
3.5確定帶輪直徑
帶傳動是機械傳動學科的一個重要分支,主要用于傳遞運動和動力。它是機械傳動中重要的傳動形式,也是電機設備的核心,聯(lián)接部件,種類異常繁多,用途極為廣泛。其最大的特點是可以自由變速,遠近傳動,結構簡單,更換方便。
設計功率由表3.2-5(文獻2)查得載荷修正系數(shù)
kw
查表2.4-3,圖2.4-1(文獻1)。取小帶輪基準直徑:
mm
大帶輪直徑由公式求得:
mm
3.6驗算主軸轉速誤差
主軸各級實際轉速值由公式:
其中,,分別為第一、二、三變速齒輪傳動比。
=50.1
=63.1
=79.6
=100.2
1.26=126.3
1.26=159.1
1.26=200.5
=252.6
=318.3
=401.1
= 505.4
=636.8
=802.3
1.26=1010.9
1.26=1273.8
1.26=1604.9
轉速誤差:
=4.1%
所以轉速誤差表為:
主軸轉速
標準轉速r/min
31.5
40
50
63
80
100
125
160
200
實際轉速r/min
31.56
39.8
50.1
63.1
79.6
100.2
126.3
159.1
200.5
轉速誤差%
0.2
0.5
0.2
0.2
0.5
0.2
1.0
0.6
0.3
主軸轉速
標準轉速r/min
250
315
400
500
630
800
1000
1250
1600
實際轉速r/min
252.6
318.3
401.1
505.4
636.8
802.3
1010.9
1273.8
1604.9
轉速誤差%
1.0
1.0
0.3
1.1
1.1
0.3
1.1
1.9
0.3
易知轉速誤差滿足要求
3.7繪制傳動系統(tǒng)圖
根據傳動情況及齒輪分布情況,繪制傳動系統(tǒng)圖如下:
第4章 估算傳動件參數(shù)并確定其結構尺寸
4.1確定傳動件轉速
由轉速圖可得各軸轉速及各齒輪轉速:
傳動件
計算轉速
軸
Ⅰ
800
Ⅱ
400
Ⅲ
125
Ⅳ
100
齒
輪
800
630
800
500
800
400
630
800
500
315
400
125
800
1600
125
31.5
4.2確定主軸支承軸頸尺寸
參照圖2.3-2(文獻1),選取前支承軸頸直徑:
=100mm
后支承軸頸直徑:
=(0.7~0.8)=70~85mm
取=80mm
4.3估算傳動軸直徑
(mm)
其中為軸危險截面的直徑 (mm)
P為該傳動軸的載入功率(kw)
P= (kw)
計算公式
軸號
計算轉速 r/min
傳動效率
輸入功率P
kw
允許扭轉角[]
deg/m
傳動軸長度
mm
估
計
軸
直
徑
mm
花鍵軸尺寸
N×d×D×B
Ⅰ
800
0.96
10.56
1.5
400
35.0
8×36×42×7
Ⅱ
400
0.96×0.995
10.51
1.5
400
41.6
8×42×48×8
Ⅲ
125
0.96×0.995×0.99
10.4
1.5
500
52.5
8×52×60×10
4.4估算傳動齒輪模數(shù)
許用接觸應力=0.96,查表2.4-17,圖2.4-8(文獻1)
得 =1100N/
由表2.4-17(文獻1)有=,查圖2.4-13(文獻1)取
=518 N/
查表2.4-17取齒寬系數(shù)
=b/m=7。
由圖2.4-10 (文獻1)取
=30時 =4.1;
=23時 =4.24;
=20時 =4.34
按齒面疲勞強度:
按輪齒彎曲疲勞強度:
可得下表:
傳
動
組
小
齒
輪
齒
數(shù)
比
齒寬系數(shù)
傳
遞
功
率
P
載荷系數(shù)
K
系
數(shù)
系
數(shù)
許
用
接
觸
應
力
許
用
齒
根
應
力
計
算
轉
速
系
數(shù)
模
數(shù)
模
數(shù)
選
取
模
數(shù)
第一變速組
30
2
7
10.56
1
61
1
1100
518
800
4.1
2.23
2.12
2.5
第二變速組
23
3.17
7
10.51
1
61
1
1100
518
400
4.24
3.22
2.94
3.5
第三變速組
20
4
9
10.4
1
61
1
1100
518
125
4.34
3.96
4.19
4.5
4.5制動器的選擇與計算
選擇電機能耗制動方式,特點是制動比較平穩(wěn),制動時間可以調整,簡化電火花鏜磨機結構,但需要直流電源,功率大,設備復雜。
由于電機制動采用電氣方法直接制動電動機使電火花鏜磨機結構簡化。制動器安裝位置應根據電火花鏜磨機具體結構,使用條件、綜合全面考慮來確定。一般情況下,力爭將制動器安放在靠近主軸(或其他執(zhí)行元件上)、且轉速較高,變速范圍較小的軸上,可達到制動時間短、沖擊小、制動靈敏、結構尺寸?。ㄖ苿愚D矩?。┑木C合效果。因此將制動器放在Ⅰ軸上。
4.6普通V帶的選擇與計算
計算內容
符
號
單
位
計算公式
計算過程
結果
設計功率
kw
,表2.4-2(文獻1)
=1.3×11
14.3
帶型選擇
mm
圖2.4-1(文獻1)
=120mm,
r/mm
A型
初選中心距
mm
根據電火花鏜磨機的布局及結構方案
600
計算帶的基準長度
mm
1728.3
選擇的帶的基準長度
mm
表2.4-4(文獻1)
1800
實際中心距
mm
=318.8
635.9
V帶輪包角
°
171.5
合格
帶速
5~25m/s
9.17
合格
帶的撓曲次數(shù)
10.2
合格
帶的根數(shù)
Z
表2.4-6 表2.4-9 表2.4-10(文獻1)
8.16
取8
其中表示接觸弧的包角修正系數(shù);
表示帶長修正系數(shù)。
4.7幾何計算
計算的尺寸:
端面齒形角:
20°
分度圓直徑:
mm
齒頂高:
mm
齒根高:
mm
全齒高:
mm
齒頂圓直徑:
=125+2×2.5=130 mm
齒根高直徑:
=125-2×3.125=118.75 mm
中心矩:
=112.5 mm
同理算出的幾何尺寸:
20°
mm
mm
mm
mm
=137.5+2×2.5=142.5 mm
=137.5-2×3.125=131.25 mm
的幾何尺寸:
20°
mm
mm
mm
mm
=150+2×2.5=155 mm
=150-2×3.125=143.75 mm
第5章 結構設計
5.1帶輪設計
根據V帶計算選用8根A型V帶,由于Ⅰ軸安裝制動器及傳動齒輪,為了改善它們的工作條件,保證加工精度,采用卸荷帶輪結構。
5.2齒輪塊設計
齒輪采用滑移齒輪變速機構,根據各傳動組的工作特點,第一擴大組的滑移齒輪采用銷釘聯(lián)接裝配式結構,基本組采用了整體滑移式齒輪。第二擴大組,由于傳遞轉矩較大,采用鏈接裝配式齒輪,所有滑移齒輪與傳動軸間均采用花鍵聯(lián)接。
5.3軸承選擇
為了簡化結構,主軸采用了軸向后端定位的兩支承軸組件、前支承采用雙列圓柱滾子軸承,后支承采用角接觸球軸承和推力軸承,為了保證主軸的回轉精度,主軸前后軸承均用壓塊式防松螺母調整軸承的間隙。
5.4操縱機構
為了適應不同的加工狀態(tài),主軸的轉速經常需要調整。根據各滑移變速傳動組的特點,分別采用了集中變速操縱機構和單獨操縱機構。
5.5潤滑系統(tǒng)設計
主軸內采用飛濺式潤滑,卸荷皮帶輪軸承采用脂潤滑方式。
5.6密封裝置
為了保證密封效果,采用接觸密封,主軸直徑大,線速度高,采用非接觸式密封,卸荷皮帶輪的潤滑采用毛氈式密封以防止雜物進入。
第6章 傳動件驗算
6.1驗算軸彎曲剛度
(1)受力分析
Ⅱ軸上的齒輪為滑移齒輪。根據本鏜床齒輪排列特點。主軸轉速為100r/min時,Ⅱ軸受力變形最大,故采用此時的齒輪位置為計算位置。
(2)計算撓度、傾角
齒輪受力計算
;
;
;
;
傳
遞
功
率
P
kw
轉
速
n
r/min
傳
動
轉
矩
T
N·mm
齒
輪
壓
力
角
°
齒
面
摩
擦
角
°
齒輪
齒輪
切
向
力
N
合
力
N
在
X
軸上的投影
N
在
Z
軸上的投影
N
分
度
圓
直
徑
mm
切
向
力
N
合
力
N
在
X
軸上的投影
N
在
Z
軸上的投影
N
分
度
圓
直
徑
mm
10.51
630
159318
20
6
2317.4
2578.3
359.8
2554.3
137.5
2460.5
2737.6
-1515
-2280.2
129.5
6.2花鍵鍵側擠壓應力計算
其中為計算擠壓應力
為許用擠壓應力
為花鍵軸傳遞的最大轉矩
為花鍵軸的大徑
為花鍵軸的小徑
為花鍵的赤數(shù)
為載荷分布不均系數(shù)=0.7~0.8
計算公式
最
大
轉
矩
N·mm
花鍵軸小徑
mm
花鍵軸大徑
mm
花
鍵
數(shù)
載
荷
系
數(shù)
工
作
長
度
mm
許
用
擠
壓
應
力
MPa
計
算
擠
壓
應
力
MPa
結
論
250926.3
42
48
8
0.8
70
30
8.30
合格
6.3驗算齒輪模數(shù)
驗算公式
按齒面接觸疲勞強度
按齒輪彎曲疲勞強度
序
號
計算內容
計算用圖表或公式
計算過程
結果
名稱
符號
單位
1
齒數(shù)
Z
23
2
使用系數(shù)
表3.4-31(文獻2)
1.0
3
功率系數(shù)
表3.4-32(文獻2)
0.84
表3.4-32(文獻2)
0.83
4
轉速變化系數(shù)
表3.4-33(文獻2)
0.97
表3.4-33(文獻2)
0.97
5
變動工作用量系數(shù)
=0.84×0.97×1.27
1.03
=0.83×0.97×2.02
取1
6
工作期限系數(shù)
=
1.27
=
2.02
7
名義切向力
N
;
=×
8
分度圓圓周速度
m/s
26.6
9
動載系數(shù)
1.12
10
齒向載荷分布系數(shù)
=1+0.2+0.17
1.37
11
齒間載荷分配系數(shù)
表3.4-38(文獻2)
1.1
表3.4-38(文獻2)
1.1
12
節(jié)點區(qū)域系數(shù)
圖3.4-7(文獻2)
2.5
13
彈性系數(shù)
表3.4-39(文獻2)
189.8
14
接觸強度重合度及螺旋角系數(shù)
圖3.4-8(文獻2)
0.9
15
許用接觸應力
N/mm
=
=1200×0.89
1068
16
復合齒形系數(shù)
插齒、滾齒查圖3.4-10(文獻2)
剃齒、磨齒查圖3.4-11(文獻2)
4.0
17
彎曲強度重合度及螺旋角系數(shù)
圖3.4-12(文獻2)
0.8
18
許用齒根應力
N/mm
=1.3×446
579.8
19
接觸強度模數(shù)
mm
3.24
20
彎曲強度模數(shù)
mm
3.31
6.4滾動軸承驗算
根據Ⅱ軸的受力狀態(tài),分別計算出左(A端)、右(B端)兩支承端支反力。
在xoy平面內:
N
N
在zoy平面內:
N
N
左、右端支反力為:
N
N
兩端支承受力相同、左端受力大,所以只驗算左端軸承。
軸承驗算:
計算公式
疲勞壽命驗算
(h)
靜負荷驗算
(N)
序
號
計算內容
計算用表或公式
計算過程
結果
名稱
符號
單位
1
額定動負荷
C
N
查軸承手冊
20000
2
速度系數(shù)
0.47
3
使用系數(shù)
表2.4-19
(文獻1)
1.0
4
功率利用系數(shù)
表2.4-20
(文獻1)
0.80
5
轉速變化系數(shù)
表2.4-21
(文獻1)
0.97
6
齒輪輪換工作系數(shù)
表2.4-27
(文獻1)
0.75
7
當量動負荷
N
640.8
8
許用壽命
h
10000
9
壽命指數(shù)
3.33
10
額定壽命
h
將上述參數(shù)代入公式
計算得
合格
11
額定靜負荷
N
查軸承手冊
15200
12
安全系數(shù)
表2.4-32
(文獻1)
1.2
13
當量靜負荷
N
已計算求得
640.8
14
靜負荷
N
合格
6.5尾柱設計
尾柱安裝在床身的左端,它由后立柱和支架組成,支架用來支承懸伸較長的刀桿,以增加刀桿的剛度。后立柱還可沿床身導軌作縱向移動,以調整位置。尾柱的動力來源于主軸箱,通過安裝在床身導軌上的光杠,再經由一對錐齒輪傳遞過來,支架的上下移動是通過立柱上的絲杠來實現(xiàn)的。
尾柱對于提高加工精度有很大作用,加工大型缸體,特別是對于加工深孔。其高度為1280mm,具體參數(shù)見圖。
結 論
時光如水,畢業(yè)設計的完成代表大學生活的即將結束,同時也是對我四年學業(yè)的綜合檢驗。本次我設計的是電火花鏜磨電火花鏜磨機設計。鏜床通常用于加工尺寸較大,要求精度較高的孔,如各種箱體、汽車發(fā)動機等。
對于一臺電火花鏜磨機來講,主軸箱是其最重要的部件,它關系到傳遞各種轉速,扭矩。而再設計它的傳動系統(tǒng),目的主要有:提高其工作效率、減少各種損耗、降低成本、減小噪音。盡管目前數(shù)控電火花鏜磨機大量的使用,效率也大大高于普通電火花鏜磨機,但價格相對便宜的普通電火花鏜磨機還是有其廣闊的市場,如何提高競爭就只能在提高工作效率和降低成本上做文章。因此就有必要不斷地對設計進行改進。
在近三個月的設計過程中,設計的每個過程,我都嚴格按照國家的標準進行制圖和設計。同時也發(fā)現(xiàn)自己很多方面的不足,只有通過長期的實踐,通過設計,生產,再設計,才能最終設計出滿意的產品。
幾個月的設計,最大的收獲是對機械產品的研發(fā)有了很高的認識以及極大的鍛煉了自己的自主設計能力,為以后步入工作崗位打下了很好的基礎。
由于缺乏經驗,在設計過程中難免會存在不合理之處,還請各位老師指出,深表謝意。
致 謝
感謝老師在整個畢業(yè)設計過程中對我的幫助和支持,正是因為有了老師的指導,我的畢業(yè)設計才得一完成。同時也感謝老師在參考資料方面對我的幫助。
參考文獻
1.李洪。機械制造工藝金屬切削電火花鏜磨機設計指導。東北工學院出版社。1989
2.李洪。實用電火花鏜磨機設計手冊。遼寧科學技術出版社。1999
3.成大先。機械設計手冊。化學工業(yè)出版社。2002
4.陳宏鈞。鏜工操作技能手冊。機械工業(yè)出版社。2004
5.劉維民、夏延秋、付興國。齒輪傳動潤滑材料?;瘜W工業(yè)出版社。2005
6.齒輪手冊編委會。齒輪手冊。機械工業(yè)出版社。2001
7.張展。減速器設計選用手冊。上??茖W技術出版社。2002
8.羅善明、余以直、郭迎福、諸世敏。帶傳動理論與新型帶傳動。國防工業(yè)出版社。2006-6
9.張松林。軸承手冊。江西科學技術出版社。2005
10.朱孝錄。機械傳動裝置選用手冊。機械工業(yè)出版社。1999
11.卜炎。機械傳動裝置設計手冊。機械工業(yè)出版社。1999
12.王旭、王積森。機械設計課程設計。機械工業(yè)出版社。2003
13.杜君文。機械制造技術裝備及設計。天津大學出版社。1998
14.濮良貴、紀名剛。機械設計。高等教育出版社。2001
15.汪星橋。電火花鏜磨機設計手冊。機械工業(yè)出版社。1986
16.陳于萍?;Q性與測量技術基礎。機械工業(yè)出版社。2000
17.王憲軍。趙存友。機械設計。哈爾濱工程大學出版社。2002
18.王知行。劉廷榮。機械原理。高等教育出版社,2004
19.張躍峰,陳通編著。AutoCAD2006入門與提高。第1版,北京:清華大學出版社。2006
20. 陳于萍?;Q性與測量技術基礎。機械工業(yè)出版社。2000
21. 李澄,吳天生,聞百橋。機械制圖。高等教育出版社。1998
22.Richard P。Paul,Robot Manipulators Mathematics,Programming and Control,MIT Press,1981
23.Sors L。Fatigue Design of Machine Components﹒Oxford:Pergamon Press,1971
24. Richard P。Groover,Mitchell Weiss,Roger N﹒Nagel,and Nicholas G﹒Odrey,Industrial Robotics,Technology,Programming,and Applications,Mcgraw — Hill Book company ,1989
40