購買設(shè)計(jì)請充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
附錄A
How Car Steering Works
by Karim Nice
You know that when you turn the steering wheel in your car, the wheels turn. Cause and effect, right? But a lot of interesting stuff goes on between the steering wheel and the tires to make this happen.
Up Next
· Car Suspension Quiz
· How Car Suspensions Work
· Discovery.com: Rocket Shock Absorbers
In this article, we'll see how the two most common types of car steering systems work: rack-and-pinion and recirculating-ball steering. Then we'll examine power steering and find out about some interesting future developments in steering systems, driven mostly by the need to increase the fuel efficiency of cars. But first, let's see what you have to do turn a car. It's not quite as simple as you might think!
When it comes to crucial automotive systems, steering is right up there with the engine and the brakes. The inner workings of this important component are pretty cool.
Turning the Car
You might be surprised to learn that when you turn your car, your front wheels are not pointing in the same direction.
For a car to turn smoothly, each wheel must follow a different circle. Since the inside wheel is following a circle with a smaller radius, it is actually making a tighter turn than the outside wheel. If you draw a line perpendicular to each wheel, the lines will intersect at the center point of the turn. The geometry of the steering linkage makes the inside wheel turn more than the outside wheel.
There are a couple different types of steering gears. The most common are rack-and-pinion and recirculating ball.
Rack-and-pinion Steering
Rack-and-pinion steering is quickly becoming the most common type of steering on cars, small trucks and SUVs. It is actually a pretty simple mechanism. A rack-and-pinion gearset is enclosed in a metal tube, with each end of the rack protruding from the tube. A rod, called a tie rod, connects to each end of the rack.
The pinion gear is attached to the steering shaft. When you turn the steering wheel, the gear spins, moving the rack. The tie rod at each end of the rack connects to the steering arm on the spindle (see diagram above).
The rack-and-pinion gearset does two things:
· It converts the rotational motion of the steering wheel into the linear motion needed to turn the wheels.
· It provides a gear reduction, making it easier to turn the wheels.
On most cars, it takes three to four complete revolutions of the steering wheel to make the wheels turn from lock to lock (from far left to far right).
The steering ratio is the ratio of how far you turn the steering wheel to how far the wheels turn. For instance, if one complete revolution (360 degrees) of the steering wheel results in the wheels of the car turning 20 degrees, then the steering ratio is 360 divided by 20, or 18:1. A higher ratio means that you have to turn the steering wheel more to get the wheels to turn a given distance. However, less effort is required because of the higher gear ratio.
Generally, lighter, sportier cars have lower steering ratios than larger cars and trucks. The lower ratio gives the steering a quicker response -- you don't have to turn the steering wheel as much to get the wheels to turn a given distance -- which is a desirable trait in sports cars. These smaller cars are light enough that even with the lower ratio, the effort required to turn the steering wheel is not excessive.
Some cars have variable-ratio steering, which uses a rack-and-pinion gearset that has a different tooth pitch (number of teeth per inch) in the center than it has on the outside. This makes the car respond quickly when starting a turn (the rack is near the center), and also reduces effort near the wheel's turning limits.
Power Rack-and-pinion
When the rack-and-pinion is in a power-steering system, the rack has a slightly different design.
Part of the rack contains a cylinder with a piston in the middle. The piston is connected to the rack. There are two fluid ports, one on either side of the piston. Supplying higher-pressure fluid to one side of the piston forces the piston to move, which in turn moves the rack, providing the power assist.
We'll check out the components that provide the high-pressure fluid, as well as decide which side of the rack to supply it to, later in the article. First, let's take a look at another type of steering.
Recirculating-ball Steering
Recirculating-ball steering is used on many trucks and SUVs today. The linkage that turns the wheels is slightly different than on a rack-and-pinion system.
The recirculating-ball steering gear contains a worm gear. You can image the gear in two parts. The first part is a block of metal with a threaded hole in it. This block has gear teeth cut into the outside of it, which engage a gear that moves the pitman arm (see diagram above). The steering wheel connects to a threaded rod, similar to a bolt, that sticks into the hole in the block. When the steering wheel turns, it turns the bolt. Instead of twisting further into the block the way a regular bolt would, this bolt is held fixed so that when it spins, it moves the block, which moves the gear that turns the wheels.
Instead of the bolt directly engaging the threads in the block, all of the threads are filled with ball bearings that recirculate through the gear as it turns. The balls actually serve two purposes: First, they reduce friction and wear in the gear; second, they reduce slop in the gear. Slop would be felt when you change the direction of the steering wheel -- without the balls in the steering gear, the teeth would come out of contact with each other for a moment, making the steering wheel feel loose.
Power steering in a recirculating-ball system works similarly to a rack-and-pinion system. Assist is provided by supplying higher-pressure fluid to one side of the block.
Now let's take a look at the other components that make up a power-steering system.
Power Steering
There are a couple of key components in power steering in addition to the rack-and-pinion or recirculating-ball mechanism.
Pump
The hydraulic power for the steering is provided by a rotary-vane pump (see diagram below). This pump is driven by the car's engine via a belt and pulley. It contains a set of retractable vanes that spin inside an oval chamber.
As the vanes spin, they pull hydraulic fluid from the return line at low pressure and force it into the outlet at high pressure. The amount of flow provided by the pump depends on the car's engine speed. The pump must be designed to provide adequate flow when the engine is idling. As a result, the pump moves much more fluid than necessary when the engine is running at faster speeds.
The pump contains a pressure-relief valve to make sure that the pressure does not get too high, especially at high engine speeds when so much fluid is being pumped.
附錄B
汽車轉(zhuǎn)向系統(tǒng)工作原路介紹
Karim Nice 著
顯而易見,當(dāng)你坐在車?yán)镛D(zhuǎn)動(dòng)方向盤時(shí)。車輪會(huì)跟著運(yùn)動(dòng)。像一對因果關(guān)系,是吧?但是其中是有很多令人感興趣的部件在方向盤和輪胎之間運(yùn)動(dòng)才構(gòu)成了我們以上看的原因和結(jié)果。
在這篇文章中,我們將看到兩種最常見的轉(zhuǎn)向系統(tǒng)是如何工作的:齒輪齒條式轉(zhuǎn)向器和循環(huán)球式轉(zhuǎn)向器。然后我們會(huì)研究一下動(dòng)力轉(zhuǎn)向并發(fā)現(xiàn)些令人欣喜的轉(zhuǎn)向系統(tǒng)未來發(fā)展動(dòng)向,其中大部分是由提高汽車燃油效率驅(qū)使產(chǎn)生的。但是首先,讓我們看看你想讓一輛汽車轉(zhuǎn)向都需要做些什么。其中的過程可能并不像你想象的那么簡單。
當(dāng)說到汽車行駛的關(guān)鍵系統(tǒng)時(shí),轉(zhuǎn)向系統(tǒng)當(dāng)然地成為和發(fā)動(dòng)機(jī)系統(tǒng),制動(dòng)系統(tǒng)處于同樣重要的地位。這個(gè)至關(guān)重要的部分內(nèi)部的工作過程也是相當(dāng)激動(dòng)人心的。
汽車的轉(zhuǎn)向
當(dāng)你控制汽車轉(zhuǎn)彎的時(shí)候你車的前輪并沒有只指向同一個(gè)方向,在了解到這些的時(shí)候你可能會(huì)很奇怪。
要想讓汽車轉(zhuǎn)向平順,每個(gè)車輪就必須沿著不同的軌跡運(yùn)動(dòng)。因?yàn)閮?nèi)側(cè)輪胎是沿著較小半徑的圓周軌跡運(yùn)動(dòng)的。如果沿著每個(gè)車輪做一條垂直線,這些線會(huì)相交于轉(zhuǎn)向軌跡的中心點(diǎn)。轉(zhuǎn)向系統(tǒng)聯(lián)動(dòng)裝置的幾何學(xué)特性使得內(nèi)側(cè)車輪轉(zhuǎn)向角度比外側(cè)車輪大些。
通常是有好幾種不同類型的轉(zhuǎn)向齒輪。最常見的就是齒輪齒條式和循環(huán)球式。
齒輪齒條式轉(zhuǎn)向器
齒輪齒條式轉(zhuǎn)向器迅速成為轎車,小型卡車以及多功能越野車轉(zhuǎn)向器中最普遍的型式。
它確實(shí)是一種比較簡單的機(jī)構(gòu)。一套出輪齒條嚙合裝置被封裝在一根金屬管子里,齒條分別從管子末端深處。有根干,叫做轉(zhuǎn)向拉桿,分別連在管架的末端。
齒輪齒條轉(zhuǎn)向器的齒輪是連在轉(zhuǎn)向軸上的。當(dāng)轉(zhuǎn)動(dòng)方向盤時(shí),齒輪轉(zhuǎn)動(dòng)推動(dòng)齒條移動(dòng)。齒條末端的橫拉桿連接于轉(zhuǎn)向節(jié)上的轉(zhuǎn)向臂上。
齒輪齒條轉(zhuǎn)系機(jī)構(gòu)做完成兩件事:
它將方向盤的轉(zhuǎn)動(dòng)轉(zhuǎn)化成轉(zhuǎn)動(dòng)車輪所需要的直線運(yùn)動(dòng)。
在大多數(shù)汽車上,一般需要轉(zhuǎn)動(dòng)三到四圈方向盤才能使車輪從左止點(diǎn)到右止點(diǎn)。
轉(zhuǎn)向系傳動(dòng)比是指轉(zhuǎn)動(dòng)方向盤角度和車輪轉(zhuǎn)動(dòng)角度的比率。具體說就是,如果轉(zhuǎn)動(dòng)方向盤一周車輪隨之轉(zhuǎn)動(dòng)二十度,實(shí)際上轉(zhuǎn)向傳動(dòng)比是360除以20,也就是18:1。跟高的轉(zhuǎn)向傳動(dòng)比意味著你需要更大的方向盤轉(zhuǎn)角才能達(dá)到同樣的車輪轉(zhuǎn)角。當(dāng)然,高傳動(dòng)比也意味著更小的力量。
大體說來,質(zhì)量小,更為運(yùn)動(dòng)型的汽車相比大型轎車和卡車擁有更小的轉(zhuǎn)向比。小傳動(dòng)比意味著更快的轉(zhuǎn)向反應(yīng)--你無需再費(fèi)力的轉(zhuǎn)動(dòng)方向盤才能達(dá)到指定的車輪轉(zhuǎn)角—這就是跑車所要求的理想特性。這些小型汽車可以用更小的轉(zhuǎn)向比,因?yàn)樵谫|(zhì)量上足夠輕,轉(zhuǎn)動(dòng)車輪所需的轉(zhuǎn)向力并沒超過要求。
一部分汽車使用可變轉(zhuǎn)向比,它使用一種在中間和兩邊具有不同的齒間距的齒輪齒條嚙合裝置。這使得汽車在剛開始轉(zhuǎn)彎后能迅速做出反應(yīng)(齒條在中間位置附近),同時(shí)也降低了轉(zhuǎn)向力限制位置時(shí)的轉(zhuǎn)向力。
動(dòng)力齒輪齒條轉(zhuǎn)向系統(tǒng)
當(dāng)齒輪齒條在動(dòng)力轉(zhuǎn)向系統(tǒng)中時(shí),齒條的設(shè)計(jì)略有不同。
齒條中間位置包含有一個(gè)氣缸與活塞?;钊B接到齒條上。在活塞兩端各有一個(gè)液壓缸。在活塞的一端提供高壓油液以推動(dòng)活塞移動(dòng),繼而推動(dòng)齒條移動(dòng),提供轉(zhuǎn)向助力。?在接下來的段落里,我們將詳細(xì)了解一下提供高壓油液的組件,然后決定向齒條的哪一方提供高壓油液。首先,讓我們來看看另一種類型的轉(zhuǎn)向器。
循環(huán)球轉(zhuǎn)向
現(xiàn)在循許多卡車和SUV使用的是循環(huán)球轉(zhuǎn)向器。它使車輪轉(zhuǎn)動(dòng)的聯(lián)動(dòng)裝置與齒輪齒條轉(zhuǎn)向系統(tǒng)略有不同。
循環(huán)球轉(zhuǎn)向機(jī)構(gòu)內(nèi)包含有一個(gè)蝸輪。您可以把這個(gè)齒輪想象成兩部分。第一部分是一塊帶有內(nèi)螺紋孔的金屬塊。這個(gè)金屬塊外側(cè)有切好的齒形,齒形是專門用來嚙合一個(gè)使轉(zhuǎn)向拉桿移動(dòng)的齒輪。方向盤連接到螺紋桿上,類似于一個(gè)連接到金屬塊上的螺桿。當(dāng)方向盤轉(zhuǎn)動(dòng)時(shí)它推動(dòng)螺桿運(yùn)動(dòng)。與一般的螺桿隨著旋入螺母的加深不同,這種螺桿在旋轉(zhuǎn)時(shí)是固定不動(dòng)的,并推動(dòng)螺母移動(dòng),螺母使嚙合的齒輪轉(zhuǎn)動(dòng)最終轉(zhuǎn)動(dòng)車輪。
與螺桿直接嚙合轉(zhuǎn)向螺母不同,所有嚙合螺紋都充滿了滾珠球軸承環(huán)繞著,齒輪嚙合副轉(zhuǎn)動(dòng)時(shí)能繞著螺紋圓周轉(zhuǎn)動(dòng)的鋼球。鋼球?qū)嶋H上兩個(gè)功能:首先,它們減少齒輪嚙合副的摩擦和磨損;第二,它們減小齒間間隙。當(dāng)改變向方向盤轉(zhuǎn)動(dòng)方向的時(shí)候你就會(huì)感覺間隙,轉(zhuǎn)向時(shí)好像感覺不到鋼球,齒型將脫離彼此接觸了一會(huì)兒,使方向盤感覺松曠。?
動(dòng)力轉(zhuǎn)向的循環(huán)球轉(zhuǎn)向系統(tǒng)的運(yùn)動(dòng)方式類似于齒輪齒條系統(tǒng)。所提供的助力是高壓力液體推動(dòng)轉(zhuǎn)向螺母的一側(cè)產(chǎn)生的。?
現(xiàn)在讓我們來看看動(dòng)力轉(zhuǎn)向系統(tǒng)中的其他組成部分。
動(dòng)力轉(zhuǎn)向
無論循環(huán)球轉(zhuǎn)向器還是齒輪齒條轉(zhuǎn)向器的動(dòng)力轉(zhuǎn)向系統(tǒng)中都有幾個(gè)重要組成部分。
泵
液壓動(dòng)力轉(zhuǎn)向是由旋轉(zhuǎn)葉片泵提供的(如下圖) 。這種泵的動(dòng)力是汽車的發(fā)動(dòng)機(jī)通過皮帶和帶輪驅(qū)動(dòng)的。它包含了一套可移動(dòng)的葉片,附帶一個(gè)橢圓形的內(nèi)腔。
隨著葉片旋轉(zhuǎn),葉片從回油道中吸進(jìn)低壓油并將其變成高壓油擠壓出去,并迫使它變成出口高壓。泵所提供的油液總量取決于轎車的引擎轉(zhuǎn)速。該泵的設(shè)計(jì)必須使發(fā)動(dòng)機(jī)空轉(zhuǎn)時(shí)也能提供充足的液體。因此,在發(fā)動(dòng)機(jī)以更高的轉(zhuǎn)速運(yùn)行時(shí)該泵產(chǎn)生的高壓油液超過正常需要。
泵包含一個(gè)壓力安全閥,以確保壓力不會(huì)太高,尤其是在發(fā)動(dòng)機(jī)轉(zhuǎn)速高時(shí),產(chǎn)生大量的高壓油液。
16
黑龍江工程學(xué)院本科生畢業(yè)論文
目 錄
摘要...............................................................................................….......................…Ⅰ
Abstract.......................................................................….........................................Ⅱ
第 1 章 緒 論......................……………………............….…..... .....…...........1
1.1 引言..............................……………………............….…..... .....…...............1
1.2 國內(nèi)外研究現(xiàn)狀……………………………………………….………..…..2
1.3 設(shè)計(jì)研究的主要內(nèi)容……………………………………….………..……..6
第 2 章 轉(zhuǎn)向機(jī)構(gòu)方案分析.....................…………................... ... ................7
2.1 齒輪齒條式轉(zhuǎn)向器…………………………………………... .……………7
2.2 循環(huán)球式轉(zhuǎn)向器…………………………………………... .………………9
2.3 蝸桿滾輪式轉(zhuǎn)向器…………………………………………...…..…...….. 10
2.4 蝸桿指銷式轉(zhuǎn)向器………………………………………………..…..…...11
2.5 轉(zhuǎn)向盤的尺寸及布置……………………………………………..……….11
2.6 轉(zhuǎn)向軸的防傷安全措施…………………………………………..……….11
2.7 轉(zhuǎn)向機(jī)構(gòu)方案確定………………………………………………..……….12
2.8 本章小結(jié)…………………………………………………………..……….12
第 3 章 轉(zhuǎn)向機(jī)構(gòu)的參數(shù)分析與確定..………......................................…13
3.1 轉(zhuǎn)向系計(jì)算載荷的確定................................................................…...........13
3.2 轉(zhuǎn)向器的效率………………………………………………………..…….14
3.2.1 轉(zhuǎn)向器的正效率.........……………………………………………...15
3.2.2 轉(zhuǎn)向器的逆效率.........……………………………………………...16
3.3 傳動(dòng)比的變化特性.………...................................................................…...16
3.3.1 轉(zhuǎn)向系傳動(dòng)比……………...........................................................….16
3.3.2 傳動(dòng)比與轉(zhuǎn)向系角傳動(dòng)比的關(guān)系................................................…17
3.3.3 轉(zhuǎn)向系的角傳動(dòng)比.…………...........................................…........…18
3.3.4 轉(zhuǎn)向器角傳動(dòng)比及其變化規(guī)律…………………………………....18
3.4 轉(zhuǎn)向器傳動(dòng)副的傳動(dòng)間隙.........................….................................…....19
3.4.1 轉(zhuǎn)向器傳動(dòng)間隙特性……………………………………………....19
3.4.2 傳動(dòng)間隙特性的確定………………………………………..…..…20
3.5 轉(zhuǎn)向盤的總轉(zhuǎn)動(dòng)圈數(shù)………………………………………………..…….22
3.6 本章小結(jié)……………………………………………………………..…….22
第 4 章 轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì)………………………………………….…… ..…….23
4.1 主要尺寸參數(shù)的選擇........................................................................….......23
4.1.1 螺桿、鋼球、螺母傳動(dòng)副…………………………………..……..23
4.1.2 鋼球直徑及數(shù)量………………………………………..…….. 23
4.1.3 滾道截面……………………………………………………..……..24
4.1.4 接觸角………….…………………………………………...…….24
4.1.5 螺距和螺距導(dǎo)程角…………………………………………...….24
4.1.6 工作鋼球圈數(shù)…………….………………………………..……25
4.2 齒條、齒扇傳動(dòng)副設(shè)計(jì)……………………………...................................28
4.3 滾珠螺旋傳動(dòng)……………………………………………………..……….32
4.3.1 工作原理與結(jié)構(gòu)…………………………………………………....33
4.3.2 滾珠絲杠副軸向間隙的調(diào)整和施加預(yù)緊力的方法……………....34
4.4 單螺母預(yù)緊原理(偏置導(dǎo)程法)...………………………………………35
4.5 轉(zhuǎn)向搖臂直徑的確定………………………………………………..…….35
4.6 轉(zhuǎn)向傳送機(jī)構(gòu)的臂、桿與球銷…………………………………..……….36
4.7 本章小結(jié)…………………………………………………………..……….37
第 5 章 轉(zhuǎn)向機(jī)構(gòu)強(qiáng)度計(jì)算…………………………………………… …. .38
5.1 鋼球與滾道的強(qiáng)度計(jì)算…………………………………………………...38
5.2 齒輪強(qiáng)度計(jì)算……………………………………………………………...39
5.3 軸的強(qiáng)度計(jì)算..............................................…………………….…………40
5.3.1 轉(zhuǎn)向橫拉桿穩(wěn)定安全系數(shù)………………………………………....40
5.3.2 轉(zhuǎn)向節(jié)臂彎曲強(qiáng)度驗(yàn)算……………………………………….…...40
5.3.3 轉(zhuǎn)向搖臂彎曲強(qiáng)度驗(yàn)算……………………………………………41
5.4 本章小結(jié)…………………………………………………………………...41
結(jié)論................................... ....................................................................................…42
參考文獻(xiàn)................... ……………………………………………………………...43
致謝............................. ……………………………………………………………..44
附錄.......................................................................................................................... 45
SY-025-BY-2
畢業(yè)設(shè)計(jì)(論文)任務(wù)書
學(xué)生姓名
陳 賀
系部
汽車工程系
專業(yè)、班級
車輛工程B07-8
指導(dǎo)教師姓名
王慧文
職稱
教授
從事
專業(yè)
車輛工程
是否外聘
□是■否
題目名稱
東風(fēng)越野平板運(yùn)輸車轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì)
一、設(shè)計(jì)(論文)目的、意義
牽引車屬于專用汽車,采用可拼接、模塊化組合方式,可以根據(jù)所運(yùn)設(shè)備的具體情況和路面條件進(jìn)行不同形式的組合以適應(yīng)各種運(yùn)輸要求。但現(xiàn)有的運(yùn)輸車存在成本高、維護(hù)不及時(shí)等問題。針對這種情況,有必要研制擁有自主知識產(chǎn)權(quán)的國產(chǎn)高性能牽引車。
目前自行式牽引車的轉(zhuǎn)向系統(tǒng)采用液壓獨(dú)立轉(zhuǎn)向,其轉(zhuǎn)向角度可達(dá)到 47°以上。本設(shè)計(jì)的牽引車它的轉(zhuǎn)向行駛模式有:直行、斜行、橫行,正常轉(zhuǎn)向行駛。轉(zhuǎn)向靈活,成本低。
現(xiàn)在,世界各國著名零件廠商正在大力研究開發(fā)一種新型的動(dòng)力轉(zhuǎn)向系統(tǒng),即電子控制電動(dòng)動(dòng)力轉(zhuǎn)向系統(tǒng)。電子控制電動(dòng)動(dòng)力轉(zhuǎn)向系統(tǒng)是在機(jī)械轉(zhuǎn)向系統(tǒng)的基礎(chǔ)上,根據(jù)作用在轉(zhuǎn)向盤上的轉(zhuǎn)矩信號和車速信號,通過電子控制裝置使電機(jī)產(chǎn)生相應(yīng)大小和方向的輔助力,協(xié)助駕駛員進(jìn)行轉(zhuǎn)向操縱,并獲得最佳轉(zhuǎn)向特性的伺服系統(tǒng)。
隨著世界各國國民經(jīng)濟(jì)的增長,公路交通狀況不斷改善,對汽車的專業(yè)化、高速化、重型化的要求越來越明顯,世界各國對專用汽車的需求逐年增加。近年來,專用汽車增長率均大于載貨車增長率,各國專用車的產(chǎn)量占載貨車產(chǎn)量的比率逐年遞增,發(fā)達(dá)國家盡量以專用車替代載貨汽車。目前專用汽車占載貨汽車市場的半壁江山。從世界各國專用汽車的技術(shù)含量看,專用汽車技術(shù)含量比普通載貨汽車高,而重型專用汽車屬于高技術(shù)、高附加值產(chǎn)品,其附加值達(dá)40%以上。
本設(shè)計(jì)的目的就是以我國現(xiàn)今發(fā)展情況探討開發(fā)一種適合我國國情、滿足未來市場需求的牽引車循環(huán)球式轉(zhuǎn)向器,并在重型汽車的轉(zhuǎn)向系統(tǒng)、轉(zhuǎn)向裝置、動(dòng)力轉(zhuǎn)向裝置等底盤轉(zhuǎn)向部件上進(jìn)行重點(diǎn)探討。要求設(shè)計(jì)方法簡單、可靠、使用,設(shè)計(jì)出的底盤具有較高的安全性、可靠性、實(shí)用性、經(jīng)濟(jì)性,滿足當(dāng)前重型車輛使用中對轉(zhuǎn)向系統(tǒng)基本的使用性能要求,并在方案實(shí)施上具有一定的可行性。
二、設(shè)計(jì)(論文)內(nèi)容、技術(shù)要求(研究方法)
1.研究的基本內(nèi)容
(1)行式平板運(yùn)輸車獨(dú)立轉(zhuǎn)向機(jī)構(gòu)總體設(shè)計(jì)方案分析確定;
(2)行式平板運(yùn)輸車獨(dú)立轉(zhuǎn)向器結(jié)構(gòu)的選擇與設(shè)計(jì);
(3)確定機(jī)械轉(zhuǎn)向器部分的性能參數(shù)
2. 技術(shù)要求
主要技術(shù)參數(shù):
發(fā)動(dòng)機(jī)最大功率
99kw
發(fā)動(dòng)機(jī)型號
EQ6100-1B
最小轉(zhuǎn)彎直徑(m)
5m
最大功率時(shí)轉(zhuǎn)速
6000r/min
最大轉(zhuǎn)矩時(shí)轉(zhuǎn)速
3800r/min
最高車速
88km/h
掛車總質(zhì)量
4390kg
整備質(zhì)量
6100kg
3. 擬解決的主要問題
(1)重型運(yùn)輸車循環(huán)球式轉(zhuǎn)向系的總體方案確定
(2)轉(zhuǎn)向機(jī)構(gòu)結(jié)構(gòu)的設(shè)計(jì),選型,尺寸參數(shù)的確定
三、設(shè)計(jì)(論文)完成后應(yīng)提交的成果
1、計(jì)算說明部分
1.5萬字設(shè)計(jì)計(jì)算說明書一份
2、圖紙部分
(1)傳動(dòng)系統(tǒng)整體裝配圖,0號1張;
(2)轉(zhuǎn)向器零件圖,0號4張;
四、設(shè)計(jì)(論文)進(jìn)度安排
(1)第1~2周(2011年2月28日~2011年3月13日) 調(diào)研、開題報(bào)告,開題答辯
(2)第3~4周(2014年3月14日~2011年3月27日) 總體傳動(dòng)方案確定
(3)第5~6周(2011年3月28日~2011年4月10日) 傳動(dòng)參數(shù)設(shè)計(jì)計(jì)算
(4)第7~9周(2011年4月11日~2011年5月1日) 轉(zhuǎn)向器裝配草圖設(shè)計(jì)
(5)第10~11周(2011年5月2日~2011年5月15日) 轉(zhuǎn)向器正式裝配圖設(shè)計(jì)
(6)第12~13周(2011年5月16日~2011年5月29日) 零件圖設(shè)計(jì)、液壓系統(tǒng)設(shè)計(jì)
(7)第14~15周(2011年5月30日~2011年6月12日) 編寫設(shè)計(jì)說明書
(8)第16周(2011年6月13日~2011年6月19日) 設(shè)計(jì)審核、修改
(9)第17周(2011年6月20日~2011年6月26日) 畢業(yè)設(shè)計(jì)答辯準(zhǔn)備及答辯
五、主要參考資料
[1] 劉惟信.汽車設(shè)計(jì)[J].清華大學(xué)出版社,2001,7
[2] 汽車工程師手冊.《汽車工程師手冊》編輯委員會(huì)[J].人民交通出版社,2001,5
[3] 陳家瑞.汽車構(gòu)造(下)[J].機(jī)械工業(yè)出版社,2005,8
[4] 濮良貴,紀(jì)名剛.機(jī)械設(shè)計(jì)[J] .高等教育出版社:2001,6
[5]郭正康.現(xiàn)代汽車列車設(shè)計(jì)與使用[J].北京理工大學(xué)出版社,2006,6
[6]中外汽車構(gòu)造圖冊(底盤分冊) [M] .吉林科學(xué)技術(shù)出版社,1995,1
[7]王寶璽.汽車拖拉機(jī)制造工藝學(xué)[M].機(jī)械工業(yè)出版社,2005,9
[8] 陳燎, 田晉躍, 殷金鑒, 趙煦.130t升降平臺(tái)運(yùn)輸車轉(zhuǎn)向系統(tǒng)設(shè)計(jì). 工程機(jī)械,2001,2
[9] 丁禮燈.楊家軍,劉照,廖道訓(xùn)等.汽車動(dòng)力轉(zhuǎn)向器轉(zhuǎn)向力矩的分析與計(jì)算.三峽大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,3
[10] 張高升 ?鄭紹春 ?魏艷.WTW90型重型平板運(yùn)輸車非線性轉(zhuǎn)向系統(tǒng)控制方法研究。武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版),2008、4
[11]Daniel A.Mantaras, Pablo Luque and Carlos Vera.Development and validation of a three-dimensional kinematec model for the McPherson steering and suspension meehanisms. Meehanism and Machine Theory, Volume39, Issue6, June 2004, Pages603-619
[12]Jaehyung Lee, D.J.Thompson, Hong Hee Yoo.et al.Vibration analysis of a vehicle body and suspensionInternational Journal of Vehicle system Design a substructure synthesis method.Vol.24, No.4, 2000, Pages471-477
六、備注
指導(dǎo)教師簽字:
年 月 日
教研室主任簽字:
年 月 日