購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
筑龍網給排水所有資料全都免費
污水廠設計說明書
一、污水廠的設計規(guī)模
設計規(guī)模:
污水廠的處理水量按最高日最高時流量,污水廠的日處理量為:該廠按遠期2010年一期2.6萬噸/天建設完成,污水廠主要處理構筑物擬分為二組,每組處理規(guī)模為1.3萬噸/天。這樣既可滿足近期處理水量要求,有留有空地以三期擴建之用。
遠期2.6萬噸,一期建設,計算主要按遠期計算,由于沒有工業(yè)廢水的變化系數(shù),所以按生活污水量來取其時變化系數(shù)。
二、進出水水質
單位:mg/L
CODcr
BOD5
SS
NH3-N
TP
進 水
380
190
238
49
4.9
出 水
60
20
20
15
0.5
該水經處理以后,水質應符合國家《污水綜合排放標準》(GB8978-1996) 中的一級標準,由于進水不但含有BOD5,還含有大量的N,P所以不僅要求去BOD5 除還應去除不中的N,P達到排放標準。
三、處理程度的計算
1.溶解性BOD5的去除率
活泩污泥處理系統(tǒng)處理水中的BOD5值是由殘存的溶解性BOD5和非溶解性BOD5二者組成,而后者主要是以生物污泥的殘屑為主體?;钚晕勰嗟膬艋δ埽侨コ芙庑訠OD5。因此從活性污泥的凈化功能來考慮,應將非溶解性的BOD5從處理水的總BOD5值中減去。
處理水中非溶解性BOD5值可用下列公式求得:(此公式僅適用于氧化溝)
處理水中溶解性BOD5為20-13.6=6.4mg/L
溶解性BOD5的去除率為:
2 .CODcr的去除率
3.SS的去除率
4.總氮的去除率
出水標準中的總氮為15mg/L,處理水中的總氮設計值取15mg/L,總氮的去除率為:
5.磷酸鹽的去除率
進水中磷酸鹽的濃度為4.9mg/L計。如磷酸鹽以最大可能成Na3PO4計,則磷的含量為4.9×0.189=0.93mg/L.注意:Na3PO4中P的含量在可能存在的磷酸鹽(溶解性)中是含量最大的,這樣計算出來的進水水質中的磷含量偏大,對整個設計來說是偏安全的。
磷的去除率為
四、城市污水處理設計
1、工藝流程的比較
城市污水處理廠的方案,既要考慮有效去除BOD5又要適當去除N,P故可采用SBR或氧化溝法,或A/A/O法,以及一體化反應池即三溝式氧化溝得改良設計.
A SBR法
工藝流程:
污水 → 一級處理→ 曝氣池 → 處理水
工作原理:
1)流入工序:廢水注入,注滿后進行反應,方式有單純注水,曝氣,緩速攪拌三種,
2)曝氣反應工序:當污水注滿后即開始曝氣操作,這是最重要的工序,根據污水處理的目的,除P脫N應進行相應的處理工作。
3)沉淀工藝:使混合液泥水分離,相當于二沉池,
4)排放工序:排除曝氣沉淀后產生的上清液,作為處理水排放,一直到最低水位,在反應器殘留一部分活性污泥作為種泥。
5)待機工序:工處理水排放后,反應器處于停滯狀態(tài)等待一個周期。
特點:
①大多數(shù)情況下,無設置調節(jié)池的心要。
②SVI值較低,易于沉淀,一般情況下不會產生污泥膨脹。
③通過對運行方式的調節(jié),進行除磷脫氮反應。
④自動化程度較高。
⑤得當時,處理效果優(yōu)于連續(xù)式。
⑥單方投資較少。
⑦占地規(guī)模大,處理水量較小。
B 厭氧池+氧化溝
工作流程:
污水→中格柵→提升泵房→細格柵→沉砂池→厭氧池→氧化溝
→二沉池→接觸池→處理水排放
工作原理:
氧化溝一般呈環(huán)形溝渠狀,污水在溝渠內作環(huán)形流動,利用獨特的水力流動特點,在溝渠轉彎處設曝氣裝置,在曝氣池上方為厭氧池,下方則為好氧段,從而產生富氧區(qū)和缺氧區(qū),可以進行硝化和反硝化作用,取得脫氮的效應,同時氧化溝法污泥齡較長,可以存活世代時間較長的微生物進行特別的反應,如除磷脫氮。
工作特點:
①在液態(tài)上,介于完全混合與推流之間,有利于活性污泥的適于生物凝聚作用。
②對水量水溫的變化有較強的適應性,處理水量較大。
③污泥齡較長,一般長達15-30天,到以存活時間較長的微生物,如果運行得當,可進行除磷脫氮反應。
④污泥產量低,且多已達到穩(wěn)定。
⑤自動化程度較高,使于管理。
⑥占地面積較大,運行費用低。
⑦脫氮效果還可以進一步提高,因為脫氮效果的好壞很大一部分決定于內循環(huán),要提高脫氮效果勢必要增加內循環(huán)量,而氧化溝的內循環(huán)量從政論上說可以不受限制,因而具有更大的脫氮能力。
⑧氧化溝法自問世以來,應用普遍,技術資料豐富。
C A/A/O法
優(yōu)點:
①該工藝為最簡單的同步脫氮除磷工藝 ,總的水力停留時間,總產占地面積少于其它的工藝 。
②在厭氧的好氧交替運行條件下,絲狀菌得不到大量增殖,無污泥膨脹之虞,SVI值一般均小于100。
③污泥中含磷濃度高,具有很高的肥效。
④運行中勿需投藥,兩個A段只用輕緩攪拌,以不嗇溶解氧濃度,運行費低。
缺點:
①除磷效果難于再行提高,污泥增長有一定的限度,不易提高,特別是當P/BOD值高時更是如此 。
②脫氮效果也難于進一步提高,內循環(huán)量一般以2Q為限,不宜太高,否則增加運行費用。
③對沉淀池要保持一定的濃度的溶解氧,減少停留時間,防止產生厭氧狀態(tài)和污泥釋放磷的現(xiàn)象出現(xiàn),但溶解 濃度也不宜過高。以防止循環(huán)混合液對缺反應器的干擾。
D 一體化反應池(一體化氧化溝又稱合建式氧化溝)
一體化氧化溝集曝氣,沉淀,泥水分離和污泥回流功能為一體,無需建造單獨得二沉池?;具\行方式大體分六個階段(包括兩個過程)。
階段A:污水通過配水閘門進入第一溝,溝內出水堰能自動調節(jié)向上關閉,溝內轉刷以低轉速運轉,僅維持溝內污泥懸浮狀態(tài)下環(huán)流,所供氧量不足,此系統(tǒng)處于缺氧狀態(tài),反硝化菌將上階段產生的硝態(tài)氮還原成氮氣逸出。在這過程中,原生污水作為碳源進入第一溝,污泥污水混合液環(huán)流后進入第二溝。第二溝內轉刷在整個階段均以高速運行,污水污泥混合液在溝內保持恒定環(huán)流,轉刷所供氧量足以氧化有機物并使氨氮轉化成硝態(tài)氮,處理后的污水與活性污泥一起進入第三溝。第三溝溝內轉刷處于閑置狀態(tài),此時,第三溝僅用作沉淀池,使泥水分離,處理后的出水通過已降低的出水堰從第三溝排出。
階段B:污水入流從第一溝調入第二溝,第一溝內的轉刷開始高速運轉。開始,溝內處于缺氧狀態(tài),隨著供氧量增加,將逐步成為富氧狀態(tài)。第二溝內處理過的污水與活性污泥一起進入第三溝,第三溝仍作為沉淀池,沉淀后的污水通過第三溝出水堰排出。
階段C:第一溝轉刷停止運轉,開始泥水分離,需要設過渡段,約一小時,至該階段末,分離過程結束。在C階段,入流污水仍然進入第二溝,處理后污水仍然通過第三溝出水堰排出。
階段D:污水入流從第二溝調至第三溝,第一溝出水堰開, 第三溝出水堰關停止出水。同時, 第三溝內轉刷開始以低轉速運轉,污水污泥一起流入第二溝,在第二溝曝氣后再流入第一溝。此時,第一溝作為沉淀池。階段D與階段A相類似,所不同的是反硝化作用發(fā)生在第三溝,處理后的污水通過第一溝已降低的出水堰排出。
階段E:污水入流從第三溝轉向第二溝,第三溝轉刷開始高速運轉,以保證該段末在溝內為硝化階段,第一溝作為沉淀池,處理后污水通過該溝出水堰排出。階段E與階段B類似,所不同的是兩個外溝功能相反。
階段F:該階段基本與C階段相同,第三溝內的轉刷停止運轉,開始泥水分離,入流污水仍然進入第二溝,處理后的污水經第一溝出水堰排出。
其主要特點:
①工藝流程短,構筑物和設備少,不設初沉池,調節(jié)池和單獨的二沉池,污泥自動回流,投資省,能耗低,占地少,管理簡便。
②處理效果穩(wěn)定可靠,其BOD5和SS去除率均在90%-95%或更高。COD得去除率也在85%以上,并且硝化和脫氮作用明顯。
③產生得剩余污泥量少,污泥不需小孩,性質穩(wěn)定,易脫水,不會帶來二次污染。
④造價低,建造快,設備事故率低,運行管理費用少。
⑤固液分離效率比一般二沉池高,池容小,能使整個系統(tǒng)再較大得流量和濃度范圍內穩(wěn)定運行。
⑥污泥回流及時,減少污泥膨脹的可能。
綜上所述,任何一種方法,都能達到降磷脫氮的效果,且出水水質良好,但相對而言,SBR法一次性投資較少,占地面積較大,且后期運行費用高于氧化溝,厭氧池-氧化溝雖然一次性投資較大,但占地面積也不少,耗電量低,運行費用較低,產污泥量大,而且構筑物多而復雜。一體化反映池科技含量高,投資省,運行管理各個方面都優(yōu)于其他處理方法。本設計的處理水量較大在,且處理水量可達30萬噸/天,因此,采用一體化反映池為本設計的工藝方案。
根據任務書上所給的原始資料,與上海石洞口污水廠比較,有很多相類似的地方。因此在做本設計時,參照其運行設計污水廠方案。
2、工藝流程的選擇
旱流時水中的各項指標均較高,故應設二級處理單元去除水中的BOD5及NH3-N和P,厭氧池加氧化溝及其四溝式循環(huán)的獨特構造,使它具有很強除磷脫氮功能。故選用此工藝流程。
3、各級處理構筑物設計流量(二級)
最高日最高時 2.6萬噸
最高日平均時 2.0萬噸
平均日平均時 1.7萬噸
說明:雨天時不能處理的流量采用溢流井溢流掉,只處理初期雨水。
五、污水處理構筑物設計
1.中格柵和提升泵房(兩者合建在一起)
中格柵用以截留水中的較大懸浮物或漂浮物,以減輕后續(xù)處理構筑物的負荷,用來去除那些可能堵塞水泵機組駐管道閥門的較粗大的懸浮物,并保證后續(xù)處理設施能正常運行的裝置。
提升泵房用以提高污水的水位,保證污水能在整個污水處理流程過程中流過 ,從而達到污水的凈化。
設計參數(shù):
因為格柵與水泵房合建在一起。因此在格柵的設計中,做了一定的修改,特別是在格柵構造和外型上的設計,突破了傳統(tǒng)的“兩頭小,中間大”的設計模式,改建成長方體形狀利于均衡水流速度,有效的減少了粗格柵的堵塞。建成一座潛地式格柵,因此在本次得設計中,將不計算柵前高度,格柵高度,直接根據所選擇的格柵型號進行設計。
(1)水泵處理系統(tǒng)前格柵柵條間隙,應符合下列要求:
1) 人工清除 25~40mm
2) 機械清除 16~25mm
3) 最大間隙 40mm
(2)在大型污水處理廠或泵站前原大型格柵(每日柵渣量大于0.2m3),一般應采用機械清渣。
(3)格柵傾角一般用450~750。機械格柵傾角一般為600~700,
(4)通過格柵的水頭損失一般采用0.08~0.15m。
(5)過柵流速一般采用0.6~1.0m/s。
運行參數(shù):
柵前流速 0.7m/s 過柵流速 0.9m/s
柵條寬度 0.01m 柵條凈間距 0.02m
柵前槽寬 0.94m 格柵間隙數(shù) 36
水頭損失 0.103m 每日柵渣量 0.87m3/d
設計中的各參數(shù)均按照規(guī)范規(guī)定的數(shù)值來取的。
提升泵房說明:
1.泵房進水角度不大于45度。
2.相鄰兩機組突出部分得間距,以及機組突出部分與墻壁的間距,應保證水泵軸或電動機轉子再檢修時能夠拆卸,并不得小于0.8。如電動機容量大于55KW時,則不得小于1.0m,作為主要通道寬度不得小于1.2m。
3.泵站為半地下式,直徑D=10m,高12m,地下埋深7m。
4.水泵為自灌式。
2、細格柵和沉沙池
細格柵的設計和中格柵相似.
運行參數(shù):
柵前流速 0.7m/s 過柵流速 0.9m/s
柵條寬度 0.01m 柵條凈間距 0.01m
柵前部分長度 0.88m 格柵傾角 60o
柵前槽寬 1.58m 格柵間隙數(shù) 70(兩組)
水頭損失 0.26m 每日柵渣量 1.73m3/d
沉砂池設計
沉砂池的作用是從污水中將比重較大的顆粒去除,其工作原理是以重力分離為基礎,故應將沉砂池的進水流速控制在只能使比重大的無機顆粒下沉,而有機懸浮顆粒則隨水流帶起立。
沉砂池設計中,必需按照下列原則:
1. 城市污水廠一般均應設置沉砂池,座數(shù)或分格數(shù)應不少于2座(格),并按并聯(lián)運行原則考慮。
2 .設計流量應按分期建設考慮:
(1) 當污水自流進入時,應按每期的最大設計流量計算;
(2) 當污水為用提升泵送入時,則應按每期工作水泵的最大組合流量計算;
(3) 合流制處理系統(tǒng)中,應按降雨時的設計流量計算。
3 .沉砂池去除的砂粒雜質是以比重為2.65,粒徑為0.2以上的顆粒為主。
4 .城市污水的沉砂量可按每106m3污水沉砂量為30m3計算,其含水率為60%,容量為1500kg/m3。
5.貯砂斗槔容積應按2日沉砂量計算,貯砂斗池壁與水平面的傾角不應小于55°排砂管直徑應不小于0.3m。
6.沉砂池的超高不宜不于0.3m 。
7 .除砂一般宜采用機械方法。當采用重力排砂時,沉砂池和曬砂廠應盡量靠近,以縮短排砂管的長度。
說明:
采用平流式沉砂池,具有處理效果好,結構簡單的優(yōu)點,分兩格。
運行參數(shù):
沉砂池長度 7.5m 池總寬 2.4m
有效水深 0.5m 貯泥區(qū)容積 0.26m3(每個沉砂斗)
沉砂斗底寬 0.5m 斗壁與水平面傾角為 600
斗高為 0.5m 斗部上口寬 1.1m
3、厭氧池和氧化溝
說明:
本設計采用的是卡羅塞(Carrousel)氧化溝。
二級處理的主體構筑物,是活性污泥的反應器,其獨特的結構使其具有脫氮除磷功能,經過氧化溝后,水質得到很大的改善。
運行參數(shù):
共建造兩組厭氧池和兩組氧化溝,一組一條。
厭氧池直徑 D=19m, 高H=4.3m
氧化溝尺寸 L×B=80m×28m, 高H=3.8m
給水系統(tǒng):通過池底放置的給水管,在池底布置成六邊行,再加上中心共七個供水口,利用到職喇叭口,可以均化水流,減少對膜式曝氣管得沖刷。盡可能的提高膜式曝氣管得使用壽命。
出水系統(tǒng):采用雙邊溢流堰,在邊池沉淀完畢,出水閘門開啟,污水通過溢流堰,進行泥水分離。澄清液通過池內得排水渠,排到接觸消毒池。在排水完畢后,出水閘門關閉。
曝氣系統(tǒng):采用表面機械曝氣DY325型倒傘型葉輪表面曝氣機。
排泥系統(tǒng):采用軌道式吸泥機,由于池體為氧化溝,其邊溝完成沉淀階段后,轉變?yōu)槿毖醭兀虼似浠亓魑勰嗨俣瓤?,避免了污泥的膨脹。所以此工藝排泥量少,有時可以不排泥。吸泥機啟動時間在該池沉淀結束時。
4、二沉池
設計參數(shù):
設計進水量:Q=10000 m3/d (每組)
表面負荷: qb范圍為1.0—1.5 m3/ m2.h ,取q=1.0 m3/ m2.h
固體負荷: qs =140 kg/ m2.d
水力停留時間(沉淀時間):T=2.5 h
堰負荷:取值范圍為1.5—2.9L/s.m,取2.0 L/(s.m)
運行參數(shù):
沉淀池直徑D=23m 有效水深 h=2.5m
池總高度 H=5.43m 貯泥斗容積Vw=706m3
5.接觸消毒池
1、城市污水經過一級或二級處理(包活性污泥法和膜法)后,水質改善,細菌含量也大幅度減少,但其絕對值仍很可觀,并有存在病源菌的可能。因此,污水排入水體前應進行消毒。消毒劑的選擇見下表:
消 毒 劑
優(yōu) 點
缺 點
適 用 條 件
液 氯
效果可靠、投配簡單、投量準確,價格便宜
氯化形成的余氯及某些含氯化合物低濃度時對水生物有毒害,當污水含工業(yè)污水比例大時,氯化可能生成致癌化合物 。
適用于,中規(guī)模的污水處理廠
漂 白 粉
投加設備簡單,價格便宜。
同液氯缺點外,沿尚有投量不準確,溶解調制不便,勞動強度大
適用于出水水質較好,排入水體衛(wèi)生條件要求高的污水處理廠
臭 氧
消毒效率高,并能有效地降解污水中殘留的有機物,色,味,等,污水中PH,溫度對消毒效果影響小,不產生難處理的或生物積累性殘余物
投資大成本高,設備管理復雜
適用于出水水質較好,排入水體衛(wèi)生條件要求高的污水處理廠
次 氯 酸 鈉
用海水或一定濃度的鹽水,由處理廠就地自制電解產生,消毒
需要特制氯片及專用的消毒器,消毒水量小
適用于醫(yī)院、生物制品所等小型污水處理站
經過以上的比較,并根據現(xiàn)在污水處理廠現(xiàn)在常用的消毒方法,決定使用液氯毒。
設計參數(shù):
設計流量:Q′=20000m3/d=231.5 L/s(設一座)
水力停留時間:T=0.5h=30min
設計投氯量為:ρ=4.0mg/L
平均水深:h=2.0m
隔板間隔:b=3.5m
采用射流泵加氯,使得處理污水與消毒液充分接觸混合,以處理水中的微生物,盡量避免造成二次污染。采用隔板式接觸反應池。
運行參數(shù):
池底坡度 2%~3% 隔板用 3塊
長 20m 寬 11m
水頭損失取 0.5m 水流速度 0.75m/s
六、污泥處理構筑物的設計計算
1、 污泥泵房
(1)回流污泥泵選用LXB-900螺旋泵3臺(2用1備),單臺提升能力為480m3/h,提升高度為2.0m-2.5m,電動機轉速n=48r/min,功率N=55kW。
(2)回流污泥泵房占地面積為9m×5.5m。
(3)剩余污泥泵選兩臺,2用1備,單泵流量Q>2Qw/2=5.56m3/h。選用1PN污泥泵Q 7.2-16m3/h, H 14-12m, N 3kW。
(4)剩余污泥泵房占地面積L×B=4m×3m,集泥井占地面積。
2、污泥濃縮池
采用輻流式濃縮池,用帶柵條的刮泥機,采用靜圧排泥。
設計規(guī)定及參數(shù):
① 進泥含水率:當為初次污泥時,其含水率一般為95%~97%;當為剩余活性污泥時,其含水率一般為99.2%~99.6%。
② 污泥固體負荷:負荷當為初次污泥時,污泥固體負荷宜采用80~120kg/(m2.d)當為剩余污泥時,污泥固體負荷宜采用30~60kg/(m2.d)。
③ 濃縮時間不宜小于12h,但也不要超過24h。
④ 有效水深一般宜為4m,最低不小于3m。
運行參數(shù):
設計流量:每座1344.4kg/d ,采用2座
進泥濃度 10g/L 污泥濃縮時間 13h
進泥含水率 99.0% 出泥含水率 96.0%
池底坡度 0.08 坡降 0.16m
貯泥時間 4h 上部直徑 6.2m
濃縮池總高 4.36m 泥斗容積 2.8m3
七、污水廠平面,高程布置
1、 平面布置
各處理單元構筑物的平面布置:
處理構筑物是污水處理廠的主體建筑物,在對它們進行平面布置時,應根據各構筑物的功能和水力要求結合當?shù)氐匦蔚刭|條件,確定它們在廠區(qū)內的平面布置應考慮:
(1)貫通,連接各處理構筑物之間管道應直通,應避免迂回曲折,造成管理不便。
(2)土方量做到基本平衡,避免劣質土壤地段
(3)在各處理構筑物之間應保持一定產間距,以滿足放工要求,一般間距要求5~10m,如有特殊要求構筑物其間距按有關規(guī)定執(zhí)行。
(4)各處理構筑物之間在平面上應盡量緊湊,在減少占地面積。
2、管線布置
(1)應設超越管線,當出現(xiàn)故障時,可直接排入水體。
(2)廠區(qū)內還應有給水管,生活水管,雨水管,消化氣管管線。
輔助建筑物:
污水處理廠的輔助建筑物有泵房,鼓風機房,辦公室,集中控制室,水質分析化驗室,變電所,存儲間,其建筑面積按具體情況而定,輔助建筑物之間往返距離應短而方便,安全,變電所應設于耗電量大的構筑物附近,化驗室應機器間和污泥干化場,以保證良好的工作條件,化驗室應與處理構筑物保持適當距離,并應位于處理構筑物夏季主風向所在的上風中處。
在污水廠內主干道應盡量成環(huán),方便運輸。主干寬6~9m次干道寬3~4m,人行道寬1.5m~2.0m曲率半徑9m,有30%以上的綠化。
3、高程布置
為了降低運行費用和使維護管理,污水在處理構筑物之間的流動以按重力流考慮為宜,廠內高程布置的主要特點是先確定最大構筑物的地面標高,然后根據水頭損失,通過水力計算,遞推出前后構筑物的各項控制標高。
根據氧化溝的設計水面標高,推求各污水處理構筑物的水面標高,根據和處理構筑物結構穩(wěn)定性,確定處理構筑物的設計地面標高。
15