南瓜籽剝殼機(jī)結(jié)構(gòu)設(shè)計(jì)
購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
畢業(yè)設(shè)計(jì)(論文)外文文獻(xiàn)翻譯 題目對(duì)輸送機(jī)用于食品輸送系統(tǒng)的調(diào)查設(shè)計(jì)和制造 專 業(yè) 名 稱 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 班 級(jí) 學(xué) 號(hào) 078105301 學(xué) 生 姓 名 呂途 指 導(dǎo) 教 師 于斐 填 表 日 期 2011 年 04 月 09 日 對(duì)輸送機(jī)用于食品輸送系統(tǒng)的調(diào)查設(shè)計(jì)和制造 S.H. Masood · B. Abbas · E. Shayan · A. Kara 收稿日期:2003年3月29日/接受日期:2003年6月21日/線上發(fā)表于:2004年6月23日?施普林格出版社倫敦有限公司2004 摘要:本文介紹食品飲料行業(yè)的研究調(diào)查結(jié)果和進(jìn)行開(kāi)發(fā)的方法技術(shù),在設(shè)計(jì)制造和使用的系統(tǒng)裝配機(jī)械輸送中縮短時(shí)間和成本。該輸送機(jī)部件在設(shè)計(jì)和生產(chǎn)材料的基礎(chǔ)上改進(jìn)技術(shù)來(lái)最小化零部件和成本,利用裝配設(shè)計(jì)和制造的設(shè)計(jì)規(guī)則。最終獲得一個(gè)測(cè)試驗(yàn)證了改良技術(shù)的傳送系統(tǒng)。相比傳統(tǒng)的方法整體材料成本下降了19%,整體組裝成本降低20%。 關(guān)鍵詞:裝配 降低成本 設(shè)計(jì) DFA DFM 機(jī)械輸送機(jī) 1引言 食品和飲料業(yè)中使用的輸送系統(tǒng)是高度自動(dòng)化定制結(jié)構(gòu)部件組成的,并進(jìn)行線路設(shè)計(jì)的產(chǎn)品,如食品箱,飲料瓶,罐快速組裝生產(chǎn)。大部分飲料食品的加工包裝涉及到組裝業(yè)務(wù)持續(xù)經(jīng)營(yíng)情況,瓶或罐需移動(dòng)或控制的速度。它們的移動(dòng)需要高效率和可靠的機(jī)械輸送機(jī),從哪個(gè)范圍的類型到地板鑲嵌鏈子、路輾或者皮帶傳動(dòng)的輸送機(jī)系統(tǒng)的類型。 近年來(lái),巨大的機(jī)械壓力輸送系統(tǒng)向客戶提供低成本而高效率的輸送機(jī),制造商傾向?qū)彶槠淠壳暗脑O(shè)計(jì)和裝配方法,看看另一種制造手段,可靠的輸送機(jī)為他們的客戶提供更經(jīng)濟(jì)的生產(chǎn)。目前,大多數(shù)材料處理設(shè)備,包括硬件和軟件,成本高,安裝和維護(hù)不靈活[1]。輸送機(jī)是固定的地點(diǎn)和傳送帶有條件地根據(jù)自身的同步速度,使得任何輸送系統(tǒng)非常困難和昂貴。在今天徹底變化的工業(yè)市場(chǎng),有需要實(shí)施新的制造策略,新系統(tǒng)業(yè)務(wù)概念和新的系統(tǒng)控制軟件和硬件開(kāi)發(fā)的概念,即可以應(yīng)用于材料設(shè)計(jì)的,靈活的新一代開(kāi)放處理系統(tǒng)[2]。侯和巒琪兩人提出了一種新的模塊化和可重構(gòu)的二維和三維輸送系統(tǒng),該系統(tǒng)包括一個(gè)開(kāi)放的可重構(gòu)軟件體系結(jié)構(gòu)的基礎(chǔ)上的CIM - OSA的(開(kāi)放系統(tǒng))模型。據(jù)指出,在飲料行業(yè)研究領(lǐng)域的改善輸送系統(tǒng)中使用的是非常有限的。大多數(shù)已發(fā)表的研究是針對(duì)提高系統(tǒng)的運(yùn)行輸送機(jī)一體化系統(tǒng)和高度復(fù)雜的軟件和硬件。 本文提出的研究調(diào)查是旨在改善目前的技術(shù)和實(shí)踐中使用的設(shè)計(jì),制造和裝配式鏈?zhǔn)捷斔蜋C(jī)驅(qū)動(dòng)機(jī)械,以降低制造所需的時(shí)間和輸送成本等。部分應(yīng)用并行工程的概念和幾個(gè)重要的輸送機(jī)制造的設(shè)計(jì)原則和設(shè)計(jì)組裝[4,5],為它們的功能進(jìn)行了研究。材料的適用性,強(qiáng)度準(zhǔn)則,成本和裝配用于在整個(gè)運(yùn)輸系統(tǒng)。關(guān)鍵部件進(jìn)行了修改和重新設(shè)計(jì)新的形狀和幾何形狀,材料和一些新的。改進(jìn)后的設(shè)計(jì)方法和部分新功能進(jìn)行了核實(shí)。輸送機(jī)上測(cè)試新的考驗(yàn)輸送系統(tǒng)設(shè)計(jì),制造和組裝使用新的改進(jìn)的部分。 2 制造和裝配的設(shè)計(jì)(DFMA) 近年來(lái),研究關(guān)于在圖紙面積上和設(shè)計(jì)制造,已成為非常有用的方法,為了產(chǎn)業(yè),必須考慮改善其設(shè)施和制造業(yè)。然而,沒(méi)有足夠的相關(guān)工作做了特別的研究,輸送配件的設(shè)計(jì)在方法問(wèn)題上越來(lái)越多的傳統(tǒng)的數(shù)據(jù)處理和重新繪制的工程設(shè)計(jì)輸送機(jī)的基礎(chǔ)。大量的論文已發(fā)表有相關(guān)的問(wèn)題進(jìn)行調(diào)查DFMA和應(yīng)用各種方法,以實(shí)現(xiàn)經(jīng)濟(jì)的結(jié)果,證明,有效率和有效的公司根據(jù)成本調(diào)查的。 DFMA知識(shí)的主要分類,可確定為:(1)一般準(zhǔn)則,(2)公司特定的最佳實(shí)踐(3)具體過(guò)程和或資源的困難。其中設(shè)計(jì)人員應(yīng)該知道,一般準(zhǔn)則是指普遍適用的規(guī)則的,涉及到制造業(yè)領(lǐng)域。下面已經(jīng)編制準(zhǔn)則對(duì)于DFM的清單 [6]. l 設(shè)計(jì)最低數(shù)量的零件 l 開(kāi)發(fā)一個(gè)模塊化設(shè)計(jì) l 盡量減少部件的變化 l 設(shè)計(jì)部件是多功能 l 為多用途設(shè)計(jì)零件 l 為簡(jiǎn)化設(shè)計(jì),零件制造 l 避免單獨(dú)緊固件 l 最大化遵守:為簡(jiǎn)化設(shè)計(jì),裝配 l 盡量減少處理:處理演示設(shè)計(jì) l 評(píng)估裝配方法 l 消除調(diào)整 l 避免彈性元件:他們是難以操作 l 已知部分功能的使用 l 允許零件的最大的不容忍現(xiàn)象 l 使用已知的和經(jīng)過(guò)驗(yàn)證的廠商和供應(yīng)商 l 在強(qiáng)制降級(jí)的值使用部分無(wú)邊際過(guò)度緊張 l 盡量減少部件 l 著中標(biāo)準(zhǔn)化 l 使用最簡(jiǎn)單的操作 l 已知使用行動(dòng)能力 l 盡量減少設(shè)置和干預(yù) l 分批承接的工程變更 這些設(shè)計(jì)準(zhǔn)則應(yīng)被看作是最優(yōu)的“建議”。他們通常會(huì)導(dǎo)致高品質(zhì),低成本的設(shè)計(jì)和制造。有時(shí)必須作出妥協(xié),當(dāng)然。在這種情況下,如果一個(gè)準(zhǔn)則替代違背了市場(chǎng)營(yíng)銷或性能要求,下一個(gè)最好應(yīng)選擇[7]。 公司具體的最佳實(shí)踐是指在內(nèi)部設(shè)計(jì)規(guī)則。公司的開(kāi)發(fā),通常在一個(gè)較長(zhǎng)時(shí)期,而設(shè)計(jì)者將堅(jiān)持自己的信念。這些設(shè)計(jì)規(guī)則,確定由該公司為促進(jìn)特定工藝和設(shè)計(jì)決定,以全面提高質(zhì)量和效益之間的關(guān)系通過(guò)承認(rèn)。公司使用的培訓(xùn)等指導(dǎo)方針的一部分給予設(shè)計(jì)師或維修產(chǎn)品的手工裝配需要相當(dāng)數(shù)量的。注意這些方法大部分是定量善于要么被快速方便地啟動(dòng)或更加正式和。例如,準(zhǔn)則由Boothroyd和杜赫斯特[8 DFA的]就被視為是定量化,系統(tǒng)化。鑒于DFM指導(dǎo)方針,這僅僅是從經(jīng)驗(yàn)豐富的專業(yè)經(jīng)驗(yàn)法則推導(dǎo),更不正式的定性和[9]。 Fig. 1. Layout of conveyor system for labelling plasic bottles 3 傳統(tǒng)的輸送系統(tǒng)的設(shè)計(jì) 系統(tǒng)的設(shè)計(jì)和制造輸送機(jī)是一個(gè)非常復(fù)雜和耗時(shí)的過(guò)程。由于每種輸送系統(tǒng)是一種特制的產(chǎn)品,每個(gè)項(xiàng)目都有各個(gè)不同的項(xiàng)目規(guī)模,產(chǎn)品和布局。該產(chǎn)品系統(tǒng)的設(shè)計(jì)是根據(jù)客戶的要求和明確說(shuō)明.此外,系統(tǒng)布局應(yīng)適應(yīng)公司提供的空間。在修訂過(guò)程中的輸送系統(tǒng)的設(shè)計(jì)布局,可以采取包括從幾天到幾個(gè)月,或在某些情況下的幾年。一個(gè)適宜的最低成本和最大限度滿足客戶的要求是最有可能得到批準(zhǔn)。 圖1顯示了一條生產(chǎn)線,示意圖中是一個(gè)典型的輸送系統(tǒng)中安裝使用的塑料瓶的標(biāo)簽。輸送系統(tǒng)的不同部分被確定具體的技術(shù)名稱,它通常用在類似的工業(yè)應(yīng)用。該“singlizer”一節(jié)使產(chǎn)品形成一個(gè)小巷里從多個(gè)。在“減速表”降低產(chǎn)品的速度,一旦退出從填料,貼標(biāo)機(jī)等的“流量”部分用于處理與保持高速,例如,填料,貼標(biāo)機(jī)等的“轉(zhuǎn)移表”轉(zhuǎn)移的方向,產(chǎn)品流通。各節(jié)的目的,因此,這些不同的輸送機(jī)控制加工機(jī)產(chǎn)品流經(jīng)不同。 一個(gè)典型的機(jī)械輸送系統(tǒng)應(yīng)用用于食品和飲料包含超過(guò)200機(jī)械及零件根據(jù)系統(tǒng)的大小。體系中的一些共同輸送的重要組成部分,但可以統(tǒng)一的,積累到家庭側(cè)架,間隔棒,端板,蓋板,彎板內(nèi),外彎板,彎軌和軸(驅(qū)動(dòng)器,尾部和奴隸)。零件的大小和數(shù)量,這些根據(jù)所輸送機(jī)的長(zhǎng)度和數(shù)量節(jié)軌道相應(yīng)的寬度和鏈類型的需要。存在的問(wèn)題和缺點(diǎn)在目前的設(shè)計(jì),制造和裝配輸送機(jī)械是多方面的,但包括: l 對(duì)一些部件的設(shè)計(jì) l 一些部件成本高 l 在裝配的/維修時(shí)間長(zhǎng) l 使用非標(biāo)件 4 區(qū)改善 為了確定該地區(qū)的主要輸送機(jī)零件。進(jìn)行成本分析,降低材料的成本和一切勞動(dòng),以估計(jì)這種百分比在相對(duì)于總成本的所有各部分的成本。分析這樣做的目的是找出關(guān)鍵部件,主要負(fù)責(zé)零部件的成本增加了輸送機(jī)等調(diào)查手段,從而為降低成本。 表1顯示了輸送系統(tǒng)的成本分析50節(jié)。分析結(jié)果顯示,12件在15個(gè)構(gòu)成79%的成本降低總材料成本的,在輸送系統(tǒng)進(jìn)一步改進(jìn)設(shè)計(jì)是可能的。在這些,確定了7個(gè)部分,如表1星號(hào)的關(guān)鍵部分一(表現(xiàn)出)構(gòu)成的最大數(shù)量的元件數(shù)量和成本,包括材料71%以上的整體。其中,三個(gè)組成部分(腿組,側(cè)架和支持渠道)被發(fā)現(xiàn)50%的費(fèi)用占了總輸送材料。其中一名12件詳細(xì)分析每進(jìn)行審議大會(huì)的各項(xiàng)原則并行設(shè)計(jì)工程,設(shè)計(jì)和制造,以及一個(gè)新的改進(jìn)設(shè)計(jì),開(kāi)發(fā)的每一個(gè)案件[10]。組件的主要設(shè)計(jì)改進(jìn)的細(xì)節(jié)部分選定如下。 5 重新設(shè)計(jì)一套裝配小腿 在輸送系統(tǒng)中,安裝在腿的側(cè)架,是以保持整個(gè)輸送系統(tǒng)離地?,F(xiàn)有輸送工作設(shè)計(jì)的腿費(fèi)用昂貴。他們有關(guān)于穩(wěn)定方面的問(wèn)題,并導(dǎo)致交貨延誤研究。該延遲時(shí)間通常是由一些對(duì)供應(yīng)商的零部件來(lái)自海外尚未到位。在輸送中雙腿所需最關(guān)鍵的規(guī)格是: l 輸送帶負(fù)荷強(qiáng)度足夠 l 穩(wěn)固 l 易于組裝 l 好的靈活性(調(diào)整高度) 圖2表示輸送站所有設(shè)計(jì)的零件現(xiàn)有的。這表明數(shù)字是一部分腿數(shù)字表2中描述,這也顯示了一套完整的分類,以組建一個(gè)完整的成本分析與所需時(shí)間的勞動(dòng)?,F(xiàn)行體制包括塑料腿腿從海外訂購(gòu)括號(hào),不銹鋼管腿,這是圖切割成指定大小,腿管塑料調(diào)整,這是在管腿夾到底部,如圖所示。 2。片,這是大小切成正方形,鉆孔和焊接管的腿交叉角螺栓支撐板,以支持和后盾腿支架螺栓。 2#表中反映出的零件數(shù)目的每個(gè)部件和組件的數(shù)量是設(shè)計(jì)消費(fèi)的腿在每一部分。對(duì)于許多客戶通過(guò)幾年常見(jiàn)的投訴舉報(bào)公司已經(jīng)改進(jìn)使用了這種設(shè)計(jì),但其中一個(gè)是腿部的不穩(wěn)定。 從初步調(diào)查后,很明顯,該圖連接之間的不銹鋼管和塑料腳支架(第一部分和第三部分。二)未嚴(yán)格不夠。這些部件的連接的只是一個(gè)6毫米的螺栓。有時(shí),當(dāng)輸送系統(tǒng)進(jìn)行完整的產(chǎn)品負(fù)載,有人指出,在輸送的腿,造成不穩(wěn)定的機(jī)械振動(dòng)。一個(gè)主要的原因,這是由于在3月底單螺栓連接各表耳部分和第7部分。該輸送機(jī)被認(rèn)為是穩(wěn)定的關(guān)鍵問(wèn)題,并要求立即整改,以滿足客戶的期望。 考慮到設(shè)計(jì)問(wèn)題,對(duì)現(xiàn)有客戶喜好的輸送腿,開(kāi)發(fā)一輸送腿的新設(shè)計(jì)。一般來(lái)說(shuō),穩(wěn)定和腿部力量的被視為點(diǎn)通車的主要標(biāo)準(zhǔn),在新設(shè)計(jì)的改進(jìn)建議,但其他的考慮是最小化的設(shè)計(jì)簡(jiǎn)潔,集會(huì)在海外部分緩解。圖3顯示了,腿裝配新設(shè)計(jì)的輸送的,而附表三則顯示的說(shuō)明和各部分的成本。 Fig. 2. Existing leg design assembly with part names shown in Table 1 Fig. 3. New design for leg assembly with part names in Table 3 圖3顯示,新設(shè)計(jì)腿只包含5至8個(gè)輸送機(jī)的主要部件。在舊的設(shè)計(jì),塑料腿支架,腿管塑料管的調(diào)整和腿是最昂貴的項(xiàng)目向大會(huì)占72%的腿部的成本。在新的設(shè)計(jì)方案,這些地方已經(jīng)取代不銹鋼的角度和新的塑料腿調(diào)整減少了近50%,裝配成本的腿。因此,在小腿部分的總數(shù)已經(jīng)減少19至15日,每站的總安裝成本降低了55美元的新設(shè)計(jì)。 新的輸送站的設(shè)計(jì),測(cè)試時(shí),發(fā)現(xiàn)更安全和穩(wěn)定的設(shè)計(jì),比舊的。 1消除零件編號(hào)和5歲的輸送機(jī)設(shè)計(jì),使新的設(shè)計(jì)更穩(wěn)定和僵化。此外,設(shè)計(jì)寬度交叉支撐,也增加了兩個(gè)螺栓安裝,而不是老一英寸這提供了整個(gè)輸送站安裝額外的力量。 6 重新設(shè)計(jì)的側(cè)架 側(cè)架是輸送系統(tǒng)的主要部件,提供輸送機(jī)和幾乎所有的安裝部分。側(cè)架也將有一個(gè)剛性的力量,提供支持所有的負(fù)載進(jìn)行輸送。它也容納輸送配件為大會(huì)所有關(guān)聯(lián)的。側(cè)架設(shè)計(jì)的關(guān)鍵考慮因素是: l 側(cè)架(深度尺寸) l 強(qiáng)度的材料 l 易于裝配 l 易于制造 圖4顯示了側(cè)架尺寸和參數(shù)。側(cè)架設(shè)計(jì)用于現(xiàn)有似乎是合理的深度的大?。ǔ叽鐖D的H。4)。從最初的調(diào)查,發(fā)現(xiàn)該圖之間的間隔距離,并返回軸桿洞(尺寸的G和F。四)可以減少,因?yàn)橛幸恍┎槐匾膬蓚€(gè)組成部分之間的差距。重要的一點(diǎn),檢查前重新設(shè)計(jì)參數(shù),以確保將那些經(jīng)過(guò)兩個(gè)緊密,返回連鎖店將趕不上間隔欄,而輸送機(jī)運(yùn)行。設(shè)計(jì)模型是新的側(cè)架民航處開(kāi)出,以確保所有的規(guī)格是健全和部分放置在適合的位置,以檢查和許可。使用框架的設(shè)計(jì)原理設(shè)計(jì)制造了新的一面對(duì)稱,使其適用于所有類型的側(cè)架。這一變化預(yù)計(jì)將減少邊尺寸鏈框架的各種規(guī)模的顯著。 Fig. 4. Side frame dimensions 表4顯示了一個(gè)比較舊的設(shè)計(jì)尺寸和新設(shè)計(jì)的側(cè)架為同一鏈條的類型。據(jù)指出,總體規(guī)模(深度輸送機(jī))的生產(chǎn)已經(jīng)減少),從而使儲(chǔ)蓄42毫米不銹鋼側(cè)面由199二百四十一毫米每到毫米(尺寸H牌照的時(shí)間表。因此,從不銹鋼板1500 × 3000毫米,舊設(shè)計(jì)參數(shù)只允許6個(gè)3米長(zhǎng)的側(cè)架,但與新的設(shè)計(jì)參數(shù)現(xiàn)在有可能產(chǎn)生同樣的紙張尺寸7側(cè)架的3米長(zhǎng)的。該材料使用量的幀側(cè)也進(jìn)行了審查作進(jìn)一步調(diào)查。據(jù)估計(jì),約有55%的輸送系統(tǒng)的總費(fèi)用是花在材料。目前框架材料用于一邊是2.5毫米厚的不銹鋼食品級(jí)304。目前,有一個(gè)選擇,因?yàn)槠渌牧险J(rèn)為可以在市場(chǎng)上與其他被厚度可能。為此,一撓度進(jìn)行了分析估計(jì),如果有任何其他類型的合適的材料,以取代現(xiàn)有的材料,以便它不會(huì)失敗的強(qiáng)度準(zhǔn)則。 6.1 側(cè)架撓度分析 圖5顯示確定偏轉(zhuǎn)新框架方面的條件不同載荷下的X和Y方向的實(shí)驗(yàn)裝置通過(guò)。使用新的設(shè)計(jì)參數(shù)的框架集制造,被調(diào)查方側(cè)架的偏轉(zhuǎn)上1.6毫米厚的不銹鋼。阿方條架螺栓與墊片是酒吧和回報(bào)軸實(shí)驗(yàn)測(cè)試與組裝的。為偏轉(zhuǎn)的結(jié)果,得到了運(yùn)用液壓機(jī)上的可變負(fù)載側(cè)架條通過(guò)。如圖所示。 5,撓度測(cè)量?jī)x是垂直放置(Y)和水平(X)軸來(lái)衡量任何閱讀觀察到側(cè)框。上應(yīng)用的負(fù)載側(cè)架通過(guò)向下方向液壓機(jī)英寸的側(cè)架是站在支持由同一位置的腿架安裝在一邊。 三個(gè)實(shí)驗(yàn)組進(jìn)行的是四,六,八節(jié)軌道輸送機(jī),觀察大負(fù)荷下的任何異常。在加載應(yīng)用在實(shí)驗(yàn)輸送部分超過(guò)估計(jì),并在實(shí)際應(yīng)用更高的系統(tǒng)比實(shí)際輸送負(fù)荷條件。該輸送機(jī)通常設(shè)計(jì)行業(yè)負(fù)荷下進(jìn)行,每1噸米飲料工業(yè)應(yīng)用在食品和。應(yīng)用負(fù)載的目的是要估計(jì)的大框架下高負(fù)荷點(diǎn)撓度側(cè)。圖6和圖7顯示,分別是6首曲目結(jié)果4軌跡和實(shí)驗(yàn)用于傳送路段。 Fig. 5. Experimental set up to investigate deflection on new side frame design Fig. 6. Deflection results for 4-track 1.6 mm stainless steel side frame Fig. 7. Deflection results for 6-track 1.6 mm stainless steel side frame 從取得的成果,它是根據(jù)觀察到的2載荷千牛,撓度值在2毫米的幾乎所有類型的路段。在給定的情況下,1.6毫米不銹鋼側(cè)架的設(shè)計(jì)可以是一個(gè)可能替代現(xiàn)有的輸送機(jī)側(cè)架設(shè)計(jì)。據(jù)預(yù)計(jì),隨著更廣泛的輸送機(jī)部分,側(cè)架的變形將保持在允許的范圍內(nèi),即± 5毫米。主要的原因是進(jìn)行這項(xiàng)實(shí)驗(yàn),以確保不扣側(cè)架在高負(fù)荷。因此,沒(méi)有任何證據(jù)節(jié)輸送屈曲發(fā)生的任何類型的使用。還預(yù)計(jì),基于工程師的經(jīng)驗(yàn)和調(diào)查研究在當(dāng)前,組裝完成后作出的,懷孕的傳送帶將額外的力量,這將進(jìn)一步減少幀的可能性偏轉(zhuǎn)側(cè)面。偏轉(zhuǎn),例如,測(cè)量每向外一套實(shí)驗(yàn)。隨著腿架安裝在一邊,將采取行動(dòng)的力量在相反方向,將推動(dòng)側(cè)架向內(nèi)。在這個(gè)假設(shè)完全觀察時(shí),可以斷定是一個(gè)完整的測(cè)試輸送機(jī)制造和測(cè)試基于新的設(shè)計(jì)參數(shù)。 與所有的實(shí)驗(yàn)獲得的結(jié)果,這一結(jié)果表明,1.6毫米不銹鋼側(cè)架304級(jí),可用于工業(yè)生產(chǎn)的飲料和食品輸送機(jī)下加載指定的指導(dǎo)方針。節(jié)省的費(fèi)用在這方面預(yù)計(jì)將系統(tǒng)重要,因?yàn)?0%用在輸送材料是鋼由不銹鋼。 該材料審查和撓度的分析表明,現(xiàn)有的2.5毫米的不銹鋼板輸送機(jī)的應(yīng)用是一個(gè)對(duì)設(shè)計(jì)的側(cè)架的飲料食品和。分析還表明,1.6毫米厚的不銹鋼板可以得到圓滿作為其功能的替代材料的側(cè)架,其中表演節(jié)目。表5顯示了比較舊的成本和37(新設(shè)計(jì)的側(cè)架,這表明儲(chǔ)蓄是每側(cè)架新設(shè)計(jì)預(yù)計(jì)將達(dá)即節(jié)省了50.1%)。 除了這個(gè)節(jié)省成本,減少了尺寸側(cè)架的241毫米至一百九十九毫米還將允許側(cè)架生產(chǎn)出來(lái)的一個(gè)額外的3000 × 1500毫米不銹鋼薄板。新的設(shè)計(jì)也進(jìn)行了改進(jìn),在其他一些關(guān)鍵部件和組裝等支持渠道,返回輥軸,間隔棒,支持穿帶及支持方穿帶,這導(dǎo)致進(jìn)一步的節(jié)省成本和勞動(dòng)力,也容易制造。例如,裝帶新設(shè) 計(jì)的支持渠道大會(huì)的支持(包括穿帶及側(cè))需要減少進(jìn)程數(shù),減少成本的渠道和提供使用不同類型的鏈節(jié)給予穿厚度帶鋼新的M 1,使用節(jié)省33.7%這一改進(jìn)設(shè)計(jì)。新設(shè)計(jì)的輥軸的回報(bào)提供了44.5%,節(jié)約成本和勞動(dòng)時(shí)間減少50%。新設(shè)計(jì)的間隔欄所提供的估計(jì)有25%的成本節(jié)約從舊設(shè)計(jì)。 7 設(shè)計(jì)實(shí)施測(cè)試輸送系統(tǒng) 該部分的執(zhí)行部件和設(shè)計(jì)改進(jìn)的關(guān)鍵是進(jìn)行個(gè)別設(shè)計(jì)出的,制造和系統(tǒng)組裝一個(gè)正式的測(cè)試輸送。這種新的和改進(jìn)的輸送機(jī)進(jìn)行了測(cè)試檢驗(yàn)和)驗(yàn)證瓶(塑料的性能與實(shí)際產(chǎn)品。還有一個(gè)成本分析的基礎(chǔ)上進(jìn)行比較舊的設(shè)計(jì)一致的整體輸送成本與所涉及的成本節(jié)約與輸送機(jī)在這個(gè)測(cè)試中[7]。 新的測(cè)試傳送帶是一個(gè)singleiser類型(圖8),包括長(zhǎng)度為5米,總?cè)齻€(gè)不同章節(jié)C1是第6條軌道輸送第C2的加入,這是一個(gè)6通道90?彎曲輸送機(jī)。這是第C3連接到輸送,這是兩種不同類型的連鎖8軌與組合輸送部分,制表和STR。測(cè)試輸送機(jī)共載有26個(gè)主要部分。圖9顯示了用于測(cè)試輸送流量測(cè)試產(chǎn)品在合作公司。 部件的性能和效率的新的測(cè)試新的輸送機(jī)及其關(guān)鍵的順利進(jìn)行了測(cè)試,靜音表現(xiàn)觀察輸送帶產(chǎn)品流于空飲料瓶塑料。所有的部件和輸送系統(tǒng),發(fā)現(xiàn)顯示的全功能令人滿意的表現(xiàn)。 一個(gè)完整的測(cè)試傳送帶上進(jìn)行成本分析,以衡量亦有差異新舊設(shè)計(jì)和評(píng)估開(kāi)支減輕裝配勞動(dòng)和減少英寸部件數(shù)量,使用的材料和制造成本分別計(jì)算出各部分儲(chǔ)蓄率和各部分和整體系統(tǒng)進(jìn)行了測(cè)定。 Fig. 8. A singliser test conveyor Fig. 9. Test conveyor assembly: product flow test 8 結(jié)果和討論 該地區(qū)輸送系統(tǒng)最重要的考慮是,以檢查是否設(shè)置了新的支持渠道和滴水托盤加入進(jìn)行了以較少的勞動(dòng)消耗。還注意確保勞動(dòng)者一直有效履行職責(zé)的。輸送系統(tǒng)組裝的時(shí)代用于預(yù)計(jì)的因素取決于工人的情緒及其他外部。但已作出努力,以達(dá)到最接近可能的時(shí)間來(lái)制造輸送機(jī)。 一個(gè)成本分析研究揭示了以下事實(shí): l 對(duì)八個(gè)部分進(jìn)行設(shè)計(jì)的共12個(gè)改善,取得了更多地節(jié)約40%的制造成本。其他 1%的三個(gè)部分取得了節(jié)省26至34%成本。 l 在昂貴費(fèi)用的部分,最大范圍內(nèi)實(shí)現(xiàn)一方節(jié)余,返回輥軸,腿穿帶設(shè)置和支持。 l 該輸送機(jī)的總成本減少了19%。 l 該輸送機(jī)整體勞動(dòng)成本在大大減少了20%。 據(jù)觀察所得,儲(chǔ)蓄的主要目的是取得在傳動(dòng)機(jī)零件中沒(méi)有被專業(yè)設(shè)計(jì)的零件。系統(tǒng)的傳送帶上的一個(gè)重大變化是會(huì)影響側(cè)架的設(shè)計(jì)參數(shù),這也影響到其他部分的變化。其次,開(kāi)發(fā)新渠道的M帶沿剖面的支持與標(biāo)準(zhǔn)磨損增加新的重大成就輸送機(jī)設(shè)計(jì)。設(shè)計(jì)完成的新的降低了勞動(dòng)成本,也取得了重大的影響和改進(jìn)設(shè)計(jì)制造裝配線上的。與會(huì)者還注意到,通過(guò)分類數(shù)設(shè)計(jì)了不同的間隔條軌道改進(jìn)了選拔程序。新的傳送系統(tǒng)變得更經(jīng)濟(jì),成本效益以及需要使用額外的強(qiáng)度材料被淘汰。 9 結(jié)論 在設(shè)計(jì)和制造機(jī)械輸送系統(tǒng)中,相當(dāng)缺乏輸送機(jī)優(yōu)化設(shè)計(jì)的一個(gè)研究工作,特別是缺乏一個(gè)將現(xiàn)代化的技術(shù)應(yīng)用到這種系統(tǒng)的設(shè)計(jì)改進(jìn)研究中。為了提高測(cè)試的成本和交貨時(shí)間,對(duì)輸送機(jī)輸送系統(tǒng)進(jìn)行完整的故障分析和評(píng)估,在輸送機(jī)制造業(yè)中舉辦評(píng)估高消費(fèi)區(qū)域。分析應(yīng)用系統(tǒng)支持的功能和運(yùn)作原則,在不犧牲系統(tǒng)的功能和操作上改進(jìn)面向裝配的設(shè)計(jì)。一種在新的輸送機(jī)設(shè)計(jì)基礎(chǔ)上提出了所有建議使用的修改。和公司通過(guò)合作對(duì)這些建議進(jìn)行了驗(yàn)證測(cè)試。結(jié)果證明是成功的達(dá)到了整體成本的19%和節(jié)省降低20%總勞動(dòng)成本。研究結(jié)果證實(shí),通過(guò)應(yīng)用DFMA的規(guī)則,一個(gè)復(fù)雜系統(tǒng)的設(shè)計(jì)和裝配輸送食品機(jī)械的成本可大大減少。 參考文獻(xiàn) 1. Anderasen MM, Ahm T (1986) Flexible assembly system. Springer, Berlin Heidelberg New York 2. Ho JKL, Ranky PG (1994) The design and operation control of a reconfigurable flexible material handling. Proceedings of 1994 Japan-USA Symposium of Flexible Automation, vol. 2, Kobe, Japan, pp 825–828 3. Ho JKL, Ranky PG (1997) Object oriented modelling and design of reconfigurable conveyors in flexible assembly systems. Int J Comput Integr Manuf 10(5):360–379 4. Kusiak A (1990) Intelligent manufacturing systems. Prentice Hall, New York 5. Corbett J, Dooner M, Meleka J, Pym C (1991) Design for manufacturing: strategies principles and techniques. Addison-Wesley, UK 6. Mize JH, Glenn P (1989) Some fundamentals of integrated manufacturing. International Industrial Engineering Conference Proceedings, Washington, DC, pp 546–551 7. Mize JH (1987) CIM–a perspective for the future of IE’s. IIE Integrated Systems Conference Proceedings, Nashville, TN, pp 3–5 8. Boothroyd G, Dewhurst P (1988) Product design for manufacturing and assembly. Manuf Eng April:42–46 9. Bedworth DD, Henderson MR, Wolfe PM (1991) Computer integrated design and manufacturing. McGraw-Hill, Singapore 10. Abbas B (2001) An investigation into design and manufacturing of mechanical systems for food processing and beverage industry. Dissertation, Swinburne University of Technology, Hawthorn, Australia 16 畢業(yè)設(shè)計(jì)(論文)外文文獻(xiàn)翻譯 題目氣門搖臂軸支座的機(jī)械加工工藝及夾具設(shè)計(jì) 專 業(yè) 名 稱 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 班 級(jí) 學(xué) 號(hào) 078105301 學(xué) 生 姓 名 呂途 指 導(dǎo) 教 師 于婓 填 表 日 期 2010 年 04 月 08 日 Int J Adv Manuf Technol (2005) 25: 551–559 DOI 10.1007/s00170-003-1843-3 ORIGINAL ARTICLE S.H. Masood · B. Abbas · E. Shayan · A. Kara An investigation into design and manufacturing of mechanical conveyors systems for food processing Received: 29 March 2003 / Accepted: 21 June 2003 / Published online: 23 June 2004 ? Springer-Verlag London Limited 2004 Abstract This paper presents the results of a research investi- gation undertaken to develop methodologies and techniques that will reduce the cost and time of the design, manufacturing and assembly of mechanical conveyor systems used in the food and beverage industry. The improved methodology for design and production of conveyor components is based on the minimisa- tion of materials, parts and costs, using the rules of design for manufacture and design for assembly. Results obtained on a test conveyor system verify the bene?ts of using the improved tech- niques. The overall material cost was reduced by 19% and the overall assembly cost was reduced by 20% compared to conven- tional methods. Keywords Assembly · Cost reduction · Design · DFA · DFM · Mechanical conveyor 1 Introduction Conveyor systems used in the food and beverage industry are highly automated custom made structures consisting of a large number of parts and designed to carry products such as food cartons, drink bottles and cans in fast production and assembly lines. Most of the processing and packaging of food and drink in- volve continuous operations where cartons, bottles or cans are re- quired to move at a controlled speed for ?lling or assembly oper- ations. Their operations require highly ef?cient and reliable me- chanical conveyors, which range from overhead types to ?oor- mounted types of chain, roller or belt driven conveyor systems. In recent years, immense pressure from clients for low cost but ef?cient mechanical conveyor systems has pushed con- veyor manufacturers to review their current design and assembly methods and look at an alternative means to manufacture more economical and reliable conveyors for their clients. At present, S.H. Masood (u) · B. Abbas · E. Shayan · A. Kara Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Melbourne 3122, Australia E-mail: smasood@swin.edu.au most material handling devices, both hardware and software, are highly specialised, in?exible and costly to con?gure, install and maintain [1]. Conveyors are ?xed in terms of their locations and the conveyor belts according to their synchronised speeds, mak- ing any changeover of the conveyor system very dif?cult and ex- pensive. In today’s radically changing industrial markets, there is a need to implement a new manufacturing strategy, a new system operational concept and a new system control software and hard- ware development concept, that can be applied to the design of a new generation of open, ?exible material handling systems [2]. Ho and Ranky [3] proposed a new modular and recon?gurable 2D and 3D conveyor system, which encompasses an open re- con?gurable software architecture based on the CIM-OSA (open system architecture) model. It is noted that the research in the area of improvement of conveyor systems used in beverage in- dustry is very limited. Most of the published research is directed towards improving the operations of conveyor systems and inte- gration of system to highly sophisticated software and hardware. This paper presents a research investigation aimed at im- proving the current techniques and practices used in the de- sign, manufacturing and assembly of ?oor mounted type chain driven mechanical conveyors in order to reduce the manufactur- ing lead time and cost for such conveyors. Applying the con- cept of concurrent engineering and the principles of design for manufacturing and design for assembly [4, 5], several critical conveyor parts were investigated for their functionality, material suitability, strength criterion, cost and ease of assembly in the overall conveyor system. The critical parts were modi?ed and redesigned with new shape and geometry, and some with new materials. The improved design methods and the functionality of new conveyor parts were veri?ed and tested on a new test con- veyor system designed, manufactured and assembled using the new improved parts. 2 Design for manufacturing and assembly (DFMA) In recent years, research in the area of design for manufacturing and assembly has become very useful for industries that are con- 552 sidering improving their facilities and manufacturing methodol- ogy. However, there has not been enough work done in the area of design for conveyor components, especially related to the is- sue of increasing numbers of drawing data and re-engineering of the process of conveyor design based on traditional methods. · · · · · Emphasise standardisation Use the simplest possible operations Use operations of known capability Minimise setups and interventions Undertake engineering changes in batches A vast amount of papers have been published that have investi- gated issues related to DFMA and applied to various methodolo- gies to achieve results that proved economical, ef?cient and cost effective for the companies under investigation. The main classi?cations of DFMA knowledge can be iden- ti?ed as (1) General guidelines, (2) Company-speci?c best prac- tice or (3) Process and or resource-speci?c constraints. General guidelines refer to generally applicable rules-of-thumb, relat- ing to a manufacturing domain of which the designer should be aware. The following list has been compiled for DFM guidelines [6]. These design guidelines should be thought of as “optimal suggestions”. They typically will result in a high-quality, low- cost, and manufacturable design. Occasionally compromises must be made, of course. In these cases, if a guideline goes against a marketing or performance requirement, the next best alternative should be selected [7]. Company-speci?c best practice refers to the in-house design rules a company develops, usually over a long period of time, and which the designer is expected to adhere to. These design rules are identi?ed by the company as contributing to improved quality and ef?ciency by recognising the overall relationships between · · · · · · · · · · · · · · · · · Design for a minimum number of parts Develop a modular design Minimise part variations Design parts to be multifunctional Design parts for multiuse Design parts for ease of fabrication Avoid separate fasteners Maximise compliance: design for ease of assembly Minimise handling: design for handling presentation Evaluate assembly methods Eliminate adjustments Avoid ?exible components: they are dif?cult to handle Use parts of known capability Allow for maximum intolerance of parts Use known and proven vendors and suppliers Use parts at derated values with no marginal overstress Minimise subassemblies particular processes and design decisions. Companies use such guidelines as part of the training given to designers of products requiring signi?cant amounts of manual assembly or mainte- nance. Note that most of the methodologies are good at either being quick and easy to start or being more formal and quanti- tative. For example, guidelines by Boothroyd and Dewhurst [8] on DFA are considered as being quantitative and systematic. Whereas the DFM guidelines, which are merely rules of thumb derived from experienced professionals, are more qualitative and less formal [9]. 3 Conventional conveyor system design Design and manufacturing of conveyor systems is a very com- plex and time-consuming process. As every conveyor system is a custom-made product, each project varies from every other project in terms of size, product and layout. The system design Fig. 1. Layout of conveyor sys- tem for labelling plasic bottles 553 is based on client requirements and product speci?cations. More- over, the system layout has to ?t in the space provided by the company. The process of designing a layout for a conveyor sys- tem involve revisions and could take from days to months or in some instances years. One with the minimum cost and maximum client suitability is most likely to get approval. Figure 1 shows a schematic layout of a typical conveyor system installed in a production line used for labelling of plastic bottles. Different sections of the conveyor system are identi?ed by speci?c technical names, which are commonly used in similar industrial application. The “singlizer” sec- tion enables the product to form into one lane from multiple lanes. The “slowdown table” reduces the speed of product once it exits from ?ller, labeller, etc. The “mass ?ow” sec- tion is used to keep up with high-speed process, e.g., ?ller, labeller, etc. The “transfer table” transfers the direction of prod- uct ?ow. The purpose of these different conveyor sections is thus to control the product ?ow through different processing machines. A typical mechanical conveyor system used in food and bev- erage applications consists of over two hundred mechanical and electrical parts depending on the size of the system. Some of the common but essential components that could be standard- ised and accumulated into families of the conveyor system are side frames, spacer bars, end plates, cover plates, inside bend plates, outside bend plates, bend tracks and shafts (drive, tail and slave). The size and quantity of these parts vary according to the length of conveyor sections and number of tracks correspond- ing to the width and types of chains required. The problems and shortcomings in the current design, manufacturing and assembly of mechanical conveyors are varied, but include: 4 Areas of improvement In order to identify the areas of cost reduction in material and labour, a cost analysis of all main conveyor parts was conducted to estimate the percentage of cost of each part in relation to the total cost of all such parts. The purpose of this analysis was to identify the critical parts, which are mainly responsible for in- creasing the cost of the conveyor and thereby investigate means for reducing the cost of such parts. Table 1 shows the cost analysis of a 50-section conveyor sys- tem. The analysis reveals that 12 out of 15 parts constitute 79% of the total material cost of the conveyor system, where further improvements in design to reduce the cost is possible. Out of these, seven parts were identi?ed as critical parts (shown by an asterisk in Table 1) constituting maximum number of compo- nents in quantity and comprising over 71% of overall material cost. Among these, three components (leg set, side frame and support channel) were found to account for 50% of the total conveyor material cost. A detailed analysis of each of these 12 parts was carried out considering the principles of concurrent en- gineering, design for manufacture and design for assembly, and a new improved design was developed for each case [10]. De- tails of design improvement of some selected major component are presented below. 5 Redesign of leg set assembly In a conveyor system, the legs are mounted on the side frame to keep the entire conveyor system off the ?oor. The existing design of conveyor legs work, but they are costly to manufacture, they · · · · Over design of some parts High cost of some components Long hours involved in assembly/maintenance Use of non-standard parts have stability problems, and cause delays in deliveries. The delay is usually caused by some of the parts not arriving from over- seas suppliers on time. The most critical speci?cations required for the conveyor legs are: Table 1. Conveyor critical parts based on parts cost analysis Product description Leg set? Side frame? Support channel? Bend tracks Rt. roller shaft? Tail shaft Spacer bar? Support wear strip? Support side wear strip? End plate Cover plate Bend plates Torque arm bracket Slot cover Inside bend plate Qty 68 80 400 8 139 39 135 400 132 39 39 8 18 97 8 Material used Plastic leg + SS tube 2.5 mm SS C channel SS Plastic 20 dia. SS shaft 35 dia. Stainless steel 50X50X6 SS 40 × 10 mm plastic Plastic 2.5 mm/SS 1.6 mm S/S 2.5 mm/SS 6 mm S/S plate Stainless steel 2.5 mm/SS Cost (%) 20.22 16.07 15.00 14.36 6.70 6.27 5.43 5.36 3.01 1.88 1.57 1.29 1.21 0.97 0.66 Improvement possible (Yes/No) Yes Yes Yes No Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Total ?Critical parts 100.00 554 · · · · Strength to carry conveyor load Stability Ease of assembly Ease of ?exibility (for adjusting height) 1 and part 3 in Fig. 2) was not rigid enough. The connections for these parts are only a single 6 mm bolt. At times, when the conveyor system was carrying full product loads, it was observed that the conveyor legs were unstable and caused mechanical vi- bration. One of the main reasons for this was due to a single bolt Figure 2 indicates all the parts for the existing design of the conveyor leg. The indicated numbers are the part numbers described in Table 2, which also shows a breakdown of cost an- alysis complete with the labour time required to assemble a com- plete set of legs. The existing leg setup consists of plastic leg brackets ordered from overseas, stainless steel leg tubes, which are cut into speci?ed sizes, leg tube plastic adjustments, which are clipped onto the leg tube at the bottom as shown in Fig. 2. Lugs, which are cut in square sizes, drilled and welded to the leg tube to bolt the angle cross bracing and backing plate to support leg brackets bolts. The # of parts in Table 2 signi?es the number of components in each part number and the quantity is the con- sumption of each part in the leg design. Companies have used this design for many years but one of the common complaints reported by the clients was of the instability of legs. From an initial investigation, it became clear that the connec- tion between the stainless steel tube and plastic legs bracket (part Fig. 2. Existing leg design assembly with part names shown in Table 1 Table 2. Cost analysis for old leg design assembly connection at each end of the lugs in part 3 and part 7. The sta- bility of the conveyor is considered critical matter and requires recti?cation immediately to satisfy customer expectations. Considering the problems of the existing conveyor leg de- sign and the client’s preferences, a new design for the conveyor leg was developed. Generally the stability and the strength of the legs were considered as the primary criteria for improve- ment in the new design proposal but other considerations were the simplicity of design, minimisation of overseas parts and ease of assembly at the point of commissioning. Figure 3 shows, the new design of the conveyor’s leg assembly, and Table 3 gives a description and the cost of each part. Figure 3 shows that the new design consists of only ?ve main parts for the conveyor’s leg compared to eight main parts in the old design. In the old design, the plastic leg bracket, the leg tube plastic adjustment and the leg tube were the most expensive items accounting for 72% of the cost of leg assembly. In the new Part no. 1 5, 6 4 7 2 3 8 Part description Plastic leg bracket Leg tube plastic adjustment Lug Angle cross bracing Backing plate Leg tube Bolts # of parts 2 4 2 1 2 2 6 Qty 2 2 2 1 2 2 6 Cost $ 30.00 $ 28.00 $ 4.00 $ 5.00 $ 4.00 $ 25.00 $ 3.00 Source Overseas Overseas In-house In-house In-house In-house In-house Total assembly cost (welding) $ 15.00 In-house Total 19 17 $ 114.00 555 Fig. 3. New design for leg assembly with part names in Table 3 Table 3. Cost analysis for new design leg assembly Part no. 1 3 4 5 2 Part description Stainless steel angle (50 × 50 × 3 mm) Leg plastic adjustment Cross brassing Bolts Backing plate # of parts 2 2 1 8 2 Qty 2 2 1 4 2 Cost $ 24.00 $ 10.00 $ 7.00 $ 4.00 $ 4.00 Source In-house Overseas In-house In-house In-house Total assembly cost $ 10.00 In-house Total design, those parts have been replaced by a stainless steel angle and a new plastic leg adjustment reducing the cost of leg assem- bly by almost 50%. Thus the total numbers of parts in the leg have been reduced from 19 to 15 and the total cost per leg setup 15 · · · · 11 Size of side frame (depth) Strength of the material Ease for assembly Ease for manufacturing $ 59.00 has been reduced by $ 55 in the new design. The new conveyor leg design, when tested, was found to be more secure and stable than the old design. The elimination of part number 1 and 5 from old conveyor design has made the new design more stable and rigid. In addition, the width of the cross bracing has also been increased with two bolts mount instead of one in old design. This has provided the entire conveyor leg setup an additional strength. 6 Redesign of the side frames The side frame is the primary support of a conveyor system that provides physical strength to conveyors and almost all the parts are mounted on it. The side frame is also expected to have a rigid strength to provide support to all the loads carried on the conveyor. It also accommodates all the associated conveyor components for the assembly. The critical considerations of side frame design are: Figure 4 shows the side frame dimension and parameters. The side frame used in existing design appears to be of rea- sonable depth in size (dimension H in Fig. 4). From the initial investigation, it was found that the distance between spacer bar holes and return shaft (dimensions G and F in Fig. 4) could be reduced, as there was some unnecessary gap between those two components. The important point to check before rede?ning the design parameters was to make sure that after bringing those two closer, the return chains would not catch the spacer bar while the conveyor is running. The model of the new side frame design was drawn on CAD to ensure all the speci?cations are sound and the parts are placed in the position to check the clearances and the ?ts. Using the principle of design for manufacturing the new side frame design was made symmetrical so that it applies to all types of side frames. This change is expected to reduce the size of side frame signi?cantly for all sizes of chains. Table 4 shows a comparison of dimensions in the old design and the new design of side frames for the same chain type. It 556 Fig. 4. Side frame dimensions Table 4. New and old side frame dimension parameters Old design Chain type 3.25 LF/SS STR/LBP/MAG A 31 B 92 C 71 D 196 E 65 F 105 G 211 H 241 I 136 J 58 K 85 L 196 TAB 22 83 62 187 56 96 202 232 127 New design Chain type 3.25 LF/SS STR/LBP/MAG/TAB A 31 B 100 C 73 D 173 E 67 F 107 G 167 H 199 I 92 J 58 K 85 L 152 is noted that the overall size (depth) of the conveyor has been reduced from 241 mm to 199 mm (dimension H), which gives a saving of 42 mm of stainless steel on every side frame manu- factured. Thus, from a stainless steel sheet 1500 × 3000 mm, the old design parameter南瓜籽剝殼機(jī)結(jié)構(gòu)設(shè)計(jì).zip |
壓縮包目錄 | 預(yù)覽區(qū) |
|
請(qǐng)點(diǎn)擊導(dǎo)航文件預(yù)覽
|
積分
- 關(guān) 鍵 詞:
- 南瓜籽剝殼機(jī)結(jié)構(gòu)設(shè)計(jì) 南瓜 剝殼 結(jié)構(gòu)設(shè)計(jì)
- 資源描述:
-
購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
展開(kāi)閱讀全文
鏈接地址:http://www.szxfmmzy.com/p-12680570.html