滾筒式蔬菜清洗機設(shè)計
滾筒式蔬菜清洗機設(shè)計,滾筒,蔬菜,清洗,設(shè)計
中原工學(xué)院畢業(yè)設(shè)計說明書
畢業(yè)設(shè)計說明書
題目名稱: 滾筒式清洗機
院系名稱: 機電學(xué)院
班 級: 機自073班
學(xué) 號: 200700314307
學(xué)生姓名: 賀繼南
指導(dǎo)教師: 胡敏
2011 年5月
摘要
滾筒式清洗機是借圓形滾筒的轉(zhuǎn)動,使原料在其中不斷地翻轉(zhuǎn),同時用水管噴射高壓水來沖洗翻動的原料,以達到清洗目的。污水和泥沙由滾筒的網(wǎng)孔經(jīng)底部集水斗排出。該機適合清洗柑橘,橙,馬鈴薯等質(zhì)地較硬的物料。本滾筒式清洗機,是一種比較實用的食品初加工機械,它是由機架、電機、皮帶傳動系統(tǒng)、減速器、聯(lián)軸器、鏈輪傳動系統(tǒng)、軸承、螺旋式滾筒、沖洗水管、擋料板、出料機構(gòu)組成。電機、減速器固定在機架上,電機通過皮帶傳動系統(tǒng)與減速機相連,減速機通過聯(lián)軸器與小鏈輪相連,大鏈輪帶動滾筒上的摩擦輪而使得滾筒轉(zhuǎn)動,滾筒內(nèi)部有螺旋導(dǎo)板,在旋轉(zhuǎn)的同時,帶動食品排出,本新型滾筒式清洗機具有結(jié)構(gòu)簡單、能耗低、工作可靠、制造成本低和節(jié)約用水的優(yōu)點。
關(guān)鍵字:清洗機 加工機械 系統(tǒng) 轉(zhuǎn)動
Abstract
Drum type washing machine is a circular cylinder by rotation, in which the raw materials continue to flip, while high-pressure water spray with a hose to wash turning raw materials to achieve the cleaning purpose. Water and sediment from the bottom of the drum set by Pelton mesh discharged. Washing machine for citrus, orange, potatoes and other hard materials textur,The drum washing machine, is a relatively early use of food processing machinery, which is from the rack, motor, belt drive system, reducer, coupling, sprocket drive system, bearings, spiral rollers, wash water , block plate, the material agencies. Motor, gear rack fixed to the motor through the belt drive system is connected with the reducer, speed reducer is connected through the coupling and the small sprocket, large sprocket driving the friction wheel roller and makes rotating drum, drum inside have a spiral Guides, in the rotation ,at the same time, promote food discharge, this new type of drum type washing machine has benefits of simple structure, low energy consumption, reliable, low manufacturing cost and water conservation
Keyword :washing machine food processing machinery system rotating
目 錄
1 引言 1
2 總體方案的論證 2
3 傳動方案的論證 3
3.1 方案一 齒輪傳動 3
3.2 方案二 帶傳動 3
3.3 方案三 鏈傳動 4
4.結(jié)構(gòu)設(shè)計 5
4.1 選用電動機 5
4.2 機械傳動裝置的總體設(shè)計與計算[1] 6
4.3 機械傳動件的設(shè)計計算 8
4.3.1 鏈傳動的設(shè)計與計算 8
4.3.2 鏈條的設(shè)計與計算 8
4.3.3 主要失效形式 9
4.3.4滾子鏈的靜強度計算 9
4.4 鏈輪基本參數(shù)和主要尺寸 10
4.5 滾子鏈傳動的故障與維修 11
4.6 摩擦輪的設(shè)計與計算 12
4.6.1 摩擦輪方案選擇 13
方案一 圓柱平摩擦輪傳動 13
方案二 圓柱槽摩擦輪傳動 13
方案三 端面摩擦輪傳動 14
4.6.2 摩擦輪傳動的主要失效形式 15
4.6.3 摩擦輪的材料 15
4.6.4 摩擦輪傳動的設(shè)計和計算 15
4.7 軸的設(shè)計和計算 17
4.7.1 軸的材料 17
4.7.2 軸的結(jié)構(gòu)設(shè)計 17
4.8軸承蓋的設(shè)計計算[1] 18
4.9 軸承的選擇和潤滑及其壽命計算: 19
4.9.1 軸承的選擇: 19
4.9.2 軸承的潤滑 20
5 結(jié)論 21
致 謝 22
參考文獻 23
1 引言
食品機械行業(yè)是直接為食品工業(yè)服務(wù)的行業(yè)。食品工業(yè)的發(fā)展帶動了食品機械的發(fā)展;而食品機械行業(yè)的科技進步與發(fā)展,又為食品工業(yè)發(fā)展創(chuàng)造了有利的物質(zhì)條件,大大推動食品工業(yè)向前發(fā)展。
隨著食品工業(yè)的發(fā)展,食品機械在食品工業(yè)中的地位越來越重要?,F(xiàn)代化的
食品機械不僅可以生產(chǎn)出高附加值的產(chǎn)品,而且可以提高資源的利用率。
由于食品工業(yè)原料和產(chǎn)品的品種繁多,加工工藝各異,因此食品機械也相應(yīng)
是門類各異,品種多樣。目前,中國的食品機械分類是按機械工業(yè)部制定的分類標(biāo)準(zhǔn)(JB3750--80)進行的,分為食品加工專用機械和食品加工通用設(shè)備。專用機械按加工對象或生產(chǎn)品種不同分為23類,通用設(shè)備按功能不同分為10類, 據(jù)有關(guān)部門1995年統(tǒng)計,全國專業(yè)食品加工機械企業(yè),約有1920多家,工業(yè)總產(chǎn)值110億元,產(chǎn)品品種1700多種,近十幾年來,全國食品機械行業(yè)保持年增長率20%以上的水平。
近年來,在食品機械行業(yè)中已經(jīng)形成一批不僅能夠滿足國內(nèi)市場的需要,而且能打入國際市場的優(yōu)良產(chǎn)品,出口創(chuàng)匯約5000萬美元。
全國食品機械行業(yè)發(fā)展比較快的有北京、上海、天津、江蘇、浙江、山東、遼寧、廣東、福建、四川等省市。
中國許多部委都有一批力量在從事食品機械研究和開發(fā)工作。其中原機械工業(yè)部,原國內(nèi)貿(mào)易部和原輕工總會下屬從事食品機械的企業(yè)數(shù)量最多,規(guī)模最大,力量最強,代表了中國食品機械發(fā)展總體水平,形成了科研、生產(chǎn)、銷售的完整體系。
2 總體方案的論證
滾筒清洗機機的清洗機器為主要實行機構(gòu),其性能的好壞直接影響清洗機機的效率,還有傳動系統(tǒng)和集塵裝置也是清洗機機的主要機構(gòu)。
方案一 清洗機器傳動:由電動機經(jīng)皮帶輪傳動主軸使摩擦輪高速旋轉(zhuǎn)。滾筒傳動:由電動機經(jīng)鏈輪傳動帶動托輪,再以摩擦傳動滾筒。
方案二 清洗機器傳動:由電動機經(jīng)齒輪傳動主軸使摩擦輪高速旋轉(zhuǎn)。滾筒傳動:由電動機經(jīng)由皮帶輪傳動帶動托輪,再以齒輪傳動滾筒
方案三 清洗機器傳動:由電動機經(jīng)鏈輪主軸使得摩擦輪高速旋轉(zhuǎn)。滾筒傳動:由電動機經(jīng)由齒輪傳動帶動托輪,再以齒輪傳動滾筒。
方案一結(jié)構(gòu)緊湊,布局合理,傳動簡單,可靠性高,使用壽命可以得到保障,制造成本低,加工簡單。方案二、三效率比較低,加工成本高。經(jīng)過三個方案的比較,選用方案一。
圖2-1 總裝圖
3 傳動方案的論證
3.1 方案一 齒輪傳動
圖3-1 齒輪傳動
齒輪傳動的主要優(yōu)點是:①瞬時傳動比恒定,工作平穩(wěn),傳動準(zhǔn)確可靠,可傳遞空間任意兩軸之間的運動和動力;②適用于功率和速度范圍廣,功率從接近于零的微小值到數(shù)萬千瓦,圓周速度從很低到300m/s;③傳動效率高,η=0.92~0.98,在常用的機械傳動中,齒輪的傳動效率較高;④工作可靠,使用壽命長;外廓尺寸小,結(jié)構(gòu)緊湊。
齒輪傳動的主要缺點:制造和安裝精度要求較高,需專門設(shè)備制造,成本較高,不宜用于較遠距離兩軸之間的傳動。
齒輪傳動應(yīng)滿足的基本要求是:①瞬時傳動比不變,沖擊、振動和噪聲小,能保證較好的傳動平穩(wěn)性和較高的運動精度;②在尺寸小、質(zhì)量輕的前提下,輪齒的強度高,耐磨性好,承載能力大,能達到預(yù)期的工作壽命。
3.2 方案二 帶傳動
圖3-2 帶傳動
帶傳動的主要優(yōu)點:①緩沖和吸振,傳動平穩(wěn)、噪聲小;②帶傳動靠摩擦力傳動,過載時帶與帶輪接觸面間發(fā)生打滑,可防止損壞其他零件;③適用于兩軸中心矩較大的場合;④結(jié)構(gòu)簡單,制造、安裝和維護等均較為方便,成本低廉。
帶傳動的缺點:①不能保證準(zhǔn)確的傳動比;②需要較大的張緊力,增大了軸和軸承的受力;③整個傳動裝置的外廓尺寸較大,不夠緊湊;④帶的壽命較短,傳動效率較低。
鑒于上述特點,帶傳動主要適用于:①速度較高的場合,多用于原動機輸出的第一級傳動。②中小功率傳動,通常不超過50 kw。③傳動比一般不超過7,最大用到10。④傳動比不要求十分準(zhǔn)確。
3.3 方案三 鏈傳動
圖3-3 鏈傳動
鏈傳動具有帶傳動和嚙合傳動的一些特點,其優(yōu)點是:鏈傳動沒有彈性滑動和打滑,能保持準(zhǔn)確的平均傳動比;傳動尺寸比較緊湊;不需要很大的張緊力,作用在軸上的載荷較??;承載能力大;效率高(η=0.95~0.98)。同時;鏈傳動能吸振與緩和沖擊,結(jié)構(gòu)簡單,加工成本低廉,安裝精度要求低,適合較大中心距的傳動,并能在溫度較高、濕度較大、油污較重等惡劣環(huán)境中工作。
鏈傳動的缺點是:高速運轉(zhuǎn)時不夠平穩(wěn);傳動中有沖擊和噪聲;不宜在載荷變化很大和急促反向的傳動中使用;只能用于平行軸間的傳動;安裝精度和制造費用比帶傳動高。
鏈傳動的適用場合:廣泛應(yīng)用于中心距較大、多軸、平均傳動比要求準(zhǔn)確的傳動。環(huán)境惡劣的開式傳動、低速重載傳動及潤滑良好的高速傳動,均可采用鏈傳動。滾子鏈傳遞的功率通常在100kw以下,鏈速在15m/s以下,傳動比I<=7。目前其最大傳遞功率可達500kw,最高中心距可達8m。
綜合分析上述三種方案,從傳動效率、傳動比范圍、傳動速度、制造成本和安裝精度、傳動裝置外廓尺寸等方面綜合考慮,本設(shè)計課題的傳動方案采用方案三,即采用鏈傳動。
4.結(jié)構(gòu)設(shè)計
4.1 選用電動機
電動機的容量(功率)選得是否合適,對電動機的工作和經(jīng)濟性都有影響。當(dāng)容量小于工作要求時,電動機不能保證工作裝置的正常工作,或電動機因長期過載而過早損壞;容量過大則電動機的價格高,能量不能充分利用,且因經(jīng)常不在滿載下運動,其效率和功率因數(shù)都較低,造成浪費。電機的選用要點:
選用要點一
根據(jù)機械負載特性、生產(chǎn)工藝、電網(wǎng)要求、建設(shè)費用、運行費用等綜合指標(biāo),合理選擇電動機的類型
選用要點二
根據(jù)機械負載所要求的過載能力、起動轉(zhuǎn)矩、工作制及工況條件,合理選擇電動機的功率,力求運行安全、可靠而經(jīng)濟
選用要點三
根據(jù)使用場所的環(huán)境,選擇電動機的防護等級和結(jié)構(gòu)型式
選用要點四
根據(jù)生產(chǎn)機械的最高機械轉(zhuǎn)速和傳動調(diào)速系統(tǒng)的要求,選擇電動機的轉(zhuǎn)速
選用要點五
根據(jù)使用環(huán)境溫度,維護檢修方便、安全可靠等要求,選擇電動機的絕緣等級和安裝方式
選用要點六
根據(jù)電網(wǎng)電壓、頻率,選擇電動機的額定電壓、頻率
總結(jié)
在選用電動機時,要努力執(zhí)行國家技術(shù)經(jīng)濟政策,積極采用節(jié)能產(chǎn)品和新產(chǎn)品,提高綜合經(jīng)濟效益
表4-1
根據(jù)設(shè)計取
滾筒外殼體積:
摩擦圓體積:
護板體積:
查表得
滾筒外殼質(zhì)量:
摩擦圓質(zhì)量:
護板質(zhì)量:
滾筒總質(zhì)量:
滾筒重力:
清洗機機的最大裝載量:
工件所受重力:
滿載時每個托輪所受切向力:
滾筒線速度:
滾筒所需功率:
查表得:
電動機至滾筒的總效率
電動機所需功率
所以選用電動機額定功率
由于滾筒轉(zhuǎn)速不高,可選用Y系列三相異步電動機,根據(jù)額定功率選用Y132M-8型。
4.2 機械傳動裝置的總體設(shè)計與計算[1]
圖4-1 機械傳動裝置
電動機選定后,根據(jù)電動機的滿載轉(zhuǎn)速n m及工作軸的轉(zhuǎn)速n w即
可確定傳動裝置的總傳動比。
具體分配傳動比時,應(yīng)注意以下幾點:
a. 各級傳動的傳動比最好在推薦范圍內(nèi)選取,對減速傳動盡可能不超過其允許的最大值。
b. 應(yīng)注意使傳動級數(shù)少﹑傳動機構(gòu)數(shù)少﹑傳動系統(tǒng)簡單,以提高和減少精度的降低。
c. 應(yīng)使各級傳動的結(jié)構(gòu)尺寸協(xié)調(diào)﹑勻稱利于安裝,絕不能造成互相干涉。
d. 應(yīng)使傳動裝置的外輪廓尺寸盡可能緊湊。
傳動裝置的計算:
A. 電動機轉(zhuǎn)速
滾筒轉(zhuǎn)速
傳動裝置的總傳動比
B. 分配各級傳動比
因,取
則
C. 計算傳動裝置的運動參數(shù)和動力參數(shù)
a)各軸轉(zhuǎn)速
1軸
2軸
3軸
滾筒轉(zhuǎn)速
b)各軸功率
1軸
2軸
3軸
滾筒的滾動功率
c)各軸轉(zhuǎn)矩
軸
軸
將運動和動力參數(shù)計算結(jié)果整理并列于表4-2
表4-2 運動和動力參數(shù)表
參數(shù)
軸名
1軸
2軸
轉(zhuǎn)速
710
322
功率
3
2.79
轉(zhuǎn)矩
40.5
82.7
傳動比
2.2
效率
0.93
4.3 機械傳動件的設(shè)計計算
4.3.1 鏈傳動的設(shè)計與計算
圖4-2鏈傳動
4.3.2 鏈條的設(shè)計與計算
取小鏈輪齒數(shù)
則大鏈輪齒數(shù),取
初定中心距,一般取,取
以節(jié)距計的初定中心距
鏈條節(jié)數(shù)
取 (取偶)
計算額定功率
查表得
為工況系數(shù),
為齒數(shù)系數(shù),
為鏈長系數(shù),
為排數(shù)系數(shù),
根據(jù)查得:應(yīng)選用單排12A型滾子鏈,p=19.05mm
鏈條長度
計算中心距
,查表
實際中心距
,一般
鏈條速度
有效圓周力
作用在軸上的力F
4.3.3 主要失效形式
a)鏈條疲勞破壞 在閉式鏈傳動中:鏈條零件受循環(huán)應(yīng)力作用,經(jīng)過一定的循環(huán)次數(shù).鏈板發(fā)生疲勞斷裂,滾子、套筒發(fā)生沖擊疲勞破裂。在正常潤滑情況下.疲勞破壞是決定鏈傳動能力的主要因素。
b)鏈條鉸鏈磨損 主要發(fā)生在銷軸和套筒上。磨損后鏈條總長伸長,因而鏈條垂度增大,導(dǎo)致嚙合情況惡化。如動載荷增大.易發(fā)生跳齒.傳動時振動.噪聲增大。潤滑不良。開式傳動多發(fā)生磨損失效。
c) 膠合 潤滑不當(dāng)或轉(zhuǎn)速過高時.銷軸和套筒構(gòu)成的摩擦表面易發(fā)生膠合。
d)鏈條過載拉斷 常發(fā)生于低速重載情況下。
4.3.4滾子鏈的靜強度計算
在低速()重載鏈傳動中,鏈條的靜強度占主要地位。如果仍用額定功率曲線選擇計算,結(jié)果常不經(jīng)濟,因為額定功率曲線上各點相應(yīng)的條件性安全系數(shù)S為8~20,遠比靜強度安全系數(shù)大。當(dāng)進行耐疲勞和耐磨損工作能力計算時,若要求的使命壽命過短,傳動功率過大,也需進行行鏈條的靜強度驗算。
鏈條靜強度計算公式為
(4-1)
式中 為靜強度安全系數(shù);
為工況系數(shù);
為排數(shù)系數(shù);
為有效圓周力;
,并查表得,,
所以
為許用安全系數(shù),一般為4~8;如果按最大尖峰載荷來代替進行計算,則可為3~6;若速度較低,從動系統(tǒng)慣性較小,不太重要的傳動或作用力的確定比較準(zhǔn)確時,可取小值;
為單排鏈極限拉伸載荷。
因為此傳動速度較低可取最小值,取
所以滿足要求
4.4 鏈輪基本參數(shù)和主要尺寸
鏈輪齒數(shù)
配用鏈條的節(jié)距
配用鏈條的滾子外徑
小鏈輪分度圓直徑
小鏈輪齒頂圓直徑
取
小鏈輪齒根圓直徑
大鏈輪分度圓直徑
大鏈輪齒頂圓直徑
取
大鏈輪齒根圓直徑
鏈輪齒寬
查表得 , 為鏈條內(nèi)節(jié)內(nèi)寬
所以
圖4-3齒形
4.5 滾子鏈傳動的故障與維修
表4-3 滾子鏈傳動的故障與維修
故障
原因
維修措施
鏈板或鏈輪齒嚴重側(cè)磨
1.各鏈輪不共面
2.鏈輪端面跳動嚴重
3.鏈輪支承剛度差
4.鏈條扭曲嚴重
1.提高加工與安裝精度
2.提高支承件剛度
3.更換合格鏈條
鏈板早期疲勞開裂
潤滑條件良好的中低速鏈傳動,鏈板的疲勞是主要矛盾,但若過早失效則有問題:
1.鏈條規(guī)格選擇不當(dāng)
2.鏈條品質(zhì)差
3.動力源或負載動載荷大
1.重新選用合適規(guī)格的鏈條
2.更換只連合格的鏈條
3控制或減弱負載和動力源的沖擊振動
滾子提前碎裂
1.鏈輪轉(zhuǎn)速較高而鏈條規(guī)格選擇不當(dāng)
2.鏈輪齒溝有雜物或鏈條磨損嚴重發(fā)生爬齒和滾子被擠頂現(xiàn)象
3.鏈條質(zhì)量差
銷軸磨損或銷軸與套筒膠合
鏈條鉸鏈元件的磨損是最常見的現(xiàn)象之一。正常磨損是一個緩慢發(fā)展的過程。如果發(fā)展過快則
1.潤滑不良
2.鏈條質(zhì)量差或選用不當(dāng)
1.清除齒溝雜物或換新鏈條
2.清除齒溝雜物或換新鏈條
3.更換質(zhì)量合格的鏈條。
續(xù)表6-1
故障
原因
維修措施
外鏈節(jié)外側(cè)擦傷
1.鏈條未張緊,發(fā)生跳動,從而與鄰近物體碰撞
2.鏈箱變形或內(nèi)有雜物
1.使鏈條適當(dāng)張緊
2.消除箱體變形、清楚雜物
鏈條跳齒或抖動
1.鏈條磨損伸長,使節(jié)距和垂度過大
2.沖擊或脈動載荷較重
3.鏈輪齒磨損嚴重
1.更換鏈條或鏈輪
2.適當(dāng)張緊
3.采取措施穩(wěn)定載荷
鏈輪齒磨損嚴重
1.潤滑不良
2.鏈輪材質(zhì)較差,齒面硬度不足
1.改善潤滑條件
2.提高鏈輪材質(zhì)和齒面硬度
3.把鏈輪拆下,翻轉(zhuǎn)180再裝上,則可利用齒廓的另一側(cè)而延長使用壽命
卡簧、開口銷等鏈條鎖止元件松脫
1.鏈條抖動過烈
2.有障礙物磕碰
3.鎖止元件安裝不當(dāng)
1.適當(dāng)張緊或考慮增設(shè)導(dǎo)板托板
2.消除障礙物
3.改善鎖止件安裝質(zhì)量
振動劇烈、噪聲過大
1.鏈輪不共面
2.松邊垂度不合適
3.潤滑不良
4.鏈箱或支承松動
5.鏈條或鏈輪磨損嚴重
1.改善鏈輪安裝質(zhì)量
2.適當(dāng)張緊
3改善潤滑條件
4.消除鏈箱或支承松動
5.更換鏈條或鏈輪
6.加裝張緊裝置或防振導(dǎo)板
4.6 摩擦輪的設(shè)計與計算
最簡單的摩擦輪傳動是由兩個直接接觸并相互壓緊的摩擦輪組成,靠兩輪接觸面所產(chǎn)生的摩擦力來傳遞運動和動力。
摩擦輪傳動結(jié)構(gòu)簡單,傳動平穩(wěn),噪聲小,有過載打滑保護作用,可無級調(diào)速;但由于在傳動中存在彈性滑動與打滑,傳動效率低,磨損快,不能保持準(zhǔn)確的傳動比,同時,作用在軸與軸承上的力較大,只宜于中小功率的傳動。
4.6.1 摩擦輪方案選擇
方案一 圓柱平摩擦輪傳動
圓柱平摩擦輪傳動的特點與應(yīng)用:
a)結(jié)構(gòu)簡單,制造容易
b)壓緊力大,宜用于小功率傳動
c)為了減小壓緊力,可將輪面之一用非金屬材料作覆面
d)大功率傳動,摩擦輪常采用淬火鋼(如GCr15,淬硬至60HRC),并采用自動壓緊卸載環(huán)
e)為降低兩軸的平行度要求,可將輪面之一制成鼓形,軸系剛性差時亦應(yīng)如此
f)用于回轉(zhuǎn)簡驅(qū)動裝置、儀表調(diào)節(jié)裝置等
圖4-4 圓柱平摩擦輪傳動
方案二 圓柱槽摩擦輪傳動
圓柱槽摩擦輪傳動的特點與應(yīng)用:
a)壓緊力較圓柱平摩擦輪傳動小,當(dāng)時,約為其30%
b)有幾何滑動,易發(fā)熱與磨損,故應(yīng)限制溝槽高度為
c)加工和安裝要求較高
d)傳動比隨載荷和壓緊力的變化有少量變動
e)用于絞車驅(qū)動裝置等
圖4-5圓柱槽摩擦輪傳動
方案三 端面摩擦輪傳動
端面摩擦輪傳動的特點與應(yīng)用:
a)結(jié)構(gòu)簡單,容易制造;
b)壓緊力大,有幾何滑動,易發(fā)熱和磨損;
c)將小輪制成鼓形,可減少幾何滑動,降低安裝精度;
d)軸向移動小輪,可實現(xiàn)正反向無機變速,但應(yīng)避免在附近運轉(zhuǎn);
e)要注意大輪的剛度,并控制二軸線的垂直度;
f)用于摩擦壓力機等。
圖4-6 端面摩擦輪傳動
綜合以上敘述和此次設(shè)計的結(jié)構(gòu)要求,選擇第一種方案
4.6.2 摩擦輪傳動的主要失效形式
摩擦輪傳動的主要失效形式:
a)疲勞點蝕和表面壓潰 多發(fā)生在閉式傳動中,主要是由于高的接觸應(yīng)力而造成。
b)輪面膠合 壓緊力大,且轉(zhuǎn)速很高時,摩擦表面時溫度升高,導(dǎo)致潤滑油膜破裂而造成。
c)表面磨損 多發(fā)生在開式傳動中。
4.6.3 摩擦輪的材料
摩擦輪材料應(yīng)滿足彈性模量大、耐磨性好、接觸疲勞強度高、價格低且熱處理及加工性能好等要求。
選用原則:
a)要求結(jié)構(gòu)緊湊、傳動效率高時采用淬火鋼對淬火鋼或鋼對鋼。
b)對于尺寸較大、轉(zhuǎn)速較低、且為干摩擦的開式傳動,一般選用鑄鐵對鑄鐵或鑄鐵對鋼。
c)要求傳動平穩(wěn)、不添加潤滑劑,噪聲小和摩擦系數(shù)高的場合,可選用鑄鐵(或鋼)對酚醛層壓布材、皮革、橡膠或壓制石棉纖維等。
根據(jù)此裝置的結(jié)構(gòu)和設(shè)計需要,選用鑄鐵為材料。
4.6.4 摩擦輪傳動的設(shè)計和計算
傳動比
摩擦系數(shù)查表取
載荷系數(shù) ,取
齒寬系數(shù) 取
綜合彈性模量
,為主、從動輪材料的彈性模量
查表得
所以
許用接觸應(yīng)力查表得
取
圖4-7 摩擦傳動示意圖
初算中心距
取
式中 為摩擦因數(shù),查表取;
為傳遞功率;
為小摩擦輪轉(zhuǎn)速;
摩擦輪寬度
所以每個托輪的寬度
小摩擦輪直徑
取
大摩擦輪直徑
實際中心距
主動轉(zhuǎn)距
4.7 軸的設(shè)計和計算
4.7.1 軸的材料
應(yīng)用于軸的材料種類很多,主要根據(jù)軸的使用條件,對軸的強度、剛度和其他機械性能等的要求,采用的熱處理方式,同時考慮制造加工工藝,并力求經(jīng)濟合理來選擇軸的材料。
軸的常用材料是優(yōu)質(zhì)碳素鋼,如35、45和50,其中以45號鋼最為常用。
根據(jù)本設(shè)計的要求,選45號鋼作材料
4.7.2 軸的結(jié)構(gòu)設(shè)計
軸的結(jié)構(gòu)設(shè)計是確定軸的合理外形和全部結(jié)構(gòu)尺寸,為軸設(shè)計的重要步驟。
一般軸的結(jié)構(gòu)設(shè)計原則:
a)節(jié)約材料,減輕重量,盡量采用等強度外形尺寸或大的截面系數(shù)的截面形狀;
b)易于軸上零件的精確定位、穩(wěn)固、裝配、拆卸、和調(diào)整;
c)采用各種減少應(yīng)力集中和提高強度的結(jié)構(gòu)措施;
d)便于加工制造和保證精度。
由材料力學(xué)可知,軸的扭轉(zhuǎn)強度條件為
(4-2)
式中 為軸的扭轉(zhuǎn)切應(yīng)力,單位為;
為軸傳遞的轉(zhuǎn)矩,單位為;
為軸傳遞的功率,單位為;
為軸的轉(zhuǎn)速,單位為;
為軸的抗扭截面系數(shù),單位為;
為許用扭轉(zhuǎn)切應(yīng)力,單位為。
由此推得實心圓軸的最小直徑(單位為)為
(4-3)
式中為計算常數(shù),,取決于軸的材料和受載情況
查表取
所以
當(dāng)軸段上開有鍵槽時,應(yīng)適當(dāng)增大直徑以考慮鍵槽對軸的強度的削弱:時,單鍵槽增大3%,雙鍵槽增大7%;時,單鍵槽增大5%~7%,雙鍵槽增大10%~15%。最后應(yīng)對進行圓整。
綜合以上取,
軸的結(jié)構(gòu)設(shè)計如下圖:
圖4-8 主軸
4.8軸承蓋的設(shè)計計算[1]
螺釘聯(lián)接式軸承蓋調(diào)整軸承間隙方便,密封性好,應(yīng)用廣泛。
軸承外徑
根據(jù)軸承外徑取螺釘直徑
螺釘孔直徑
取
取
由結(jié)構(gòu)確定,
查表得 , , ,
代號入下圖所示:
圖4-9 軸承蓋
4.9 軸承的選擇和潤滑及其壽命計算:
4.9.1 軸承的選擇:
選擇滾動軸承的類型與多種因素有關(guān),通常根據(jù)下列幾個主要因素:
A.負荷情況 負荷是選擇軸承最主要的依據(jù),通常應(yīng)根據(jù)負荷的大小,方向和性質(zhì)來選擇軸承。
a)負荷大?。阂话闱闆r下,滾子軸承由于是線接觸,承載能力大,適用于承受較大負荷,球軸承由于是點接觸,承載能力小,適用于輕,中等負荷。
b)負荷方向:純徑向力作用,宜選用深溝球軸承,圓柱滾子軸承或滾針軸承。純軸向負荷作用,選用推力球軸承或推力滾子軸承。徑向負荷和軸向負荷聯(lián)合作用時,一般選用角接觸球軸承或圓錐滾子軸承。若徑向負荷較大而軸向負荷較小時,也可選用深溝球軸承和內(nèi)外圈都有擋邊的圓柱滾子軸承。若軸向負荷較大而徑向負荷小時,可選用推力角接觸軸承,推力圓錐滾子軸承。
c)負荷性質(zhì):有沖擊負荷時,宜選用滾子軸承。
B.高速性能 球軸承不滾子軸承有較高的極限轉(zhuǎn)速,故高速時應(yīng)優(yōu)先考慮選用球軸承。在相同內(nèi)徑時,外徑越小,滾動體越輕小,運轉(zhuǎn)時滾動體作用在外圈上的離心力也越小,因此更適合于較高轉(zhuǎn)速下工作。在一定條件下,工作轉(zhuǎn)速較高時宜選用超輕,特輕系列的軸承。
C.調(diào)心性能 當(dāng)軸兩端軸承孔同心性差或軸的剛度小,變形較大,以及多支點軸,均要求軸承調(diào)心性好,這時應(yīng)選用調(diào)心球軸承或調(diào)心滾子軸承。
D.允許的空間 徑向尺寸受限制的機械裝置,可選用滾針軸承或特輕,超輕型軸承;軸向尺寸受限制時,宜選用窄或?qū)捪盗械妮S承。
E.安裝與拆卸方便 整體式軸承座或頻繁裝拆時,應(yīng)優(yōu)先選用內(nèi)外圈可分離的軸承。軸承裝在長軸上時,為裝拆方便可選用帶錐孔和緊定套的軸承。
根據(jù)以上所述及本設(shè)計的具體要求,選用調(diào)心球軸承。
4.9.2 軸承的潤滑
軸承潤滑主要目的是減少摩擦和磨損,同時起到冷卻,吸振,防銹及降噪的作用。
常用的潤滑劑有潤滑油,潤滑脂及固體潤滑劑(二硫化鉬)。選擇潤滑劑應(yīng)當(dāng)考慮工作溫度,軸承負荷,轉(zhuǎn)速及其工作環(huán)境影響。一般來說,溫度高,負荷大,轉(zhuǎn)速低時選用粘度高的潤滑劑。
潤滑油選擇:常用的潤滑油有--機械油,高速機械油,汽輪機油,壓縮機油,變壓器油,汽缸油等等。一般而言,軸承轉(zhuǎn)速越高,則選用較低粘度的潤滑油。負荷越重,則選用粘度較高的潤滑油。潤滑方法有:油浴潤滑,循環(huán)油潤滑,噴油潤滑及油霧潤滑。
選擇潤滑油或脂潤滑的一般原則如表4-4:
表4-4 選擇潤滑油或脂潤滑的一般原則
影響選擇的因素
用潤滑脂
用潤滑油
溫度
當(dāng)溫度超過120時,要用特殊潤滑脂。當(dāng)溫度升高到200-220時,再潤滑的時間間隔要縮短
油池溫度超過90或軸承溫度超過200時,可采用特殊的潤滑油
溫度系數(shù)
<400000
〈400000-500000
載荷
低到中等
各種載荷直到最大
軸承形式
不用于不對稱的球面滾子推力軸承
用于各種軸承
殼體設(shè)計
較簡單
需要較復(fù)雜的密封和供油裝置
長時間不需維護的地方
可用。根據(jù)操作條件,特別要考慮工作溫度
不可以用
集中供油
選用泵送性能好的潤滑脂。不能有效地傳熱,也不能作為液壓介質(zhì)
可用
最低轉(zhuǎn)矩損失
如填裝適當(dāng),比采用油的損失還要低
為了獲得最低功率損失,應(yīng)采用有清洗泵或油霧裝置的循環(huán)系統(tǒng)
污染條件
可用。正確的設(shè)計可防止污染物的侵入
可用。但要采用有防護、過濾裝置的循環(huán)系統(tǒng)
5 結(jié)論
在本設(shè)計中,執(zhí)行工作的從動件能滿足生產(chǎn)工藝提出的運動形式、運動規(guī)律、功能范圍和運動性能等諸方面的具體要求。結(jié)構(gòu)簡單,尺寸大小適度,在整體布置上占有空間小,布局緊湊。制造加工容易,維修拆裝方便,工作中穩(wěn)定可靠,使用安全,具有足夠的壽命。滾筒與電動機的運動方式,功率、轉(zhuǎn)矩及其載荷特性能夠相互協(xié)調(diào),與其他相鄰機構(gòu)的銜接正常,傳動運動和力可靠,不會發(fā)生運動干涉。本機符合生產(chǎn)的需要,具有較高的生產(chǎn)率和經(jīng)濟效益。
致 謝
為期三個多月的畢業(yè)設(shè)計已經(jīng)接近尾聲,回顧整個過程,我深有感受。在設(shè)計工作的前期,我參觀了南陽宛信食品機械有限公司,這次參觀最主要的目的是對清洗機機的實物進行測繪和了解,在參觀過程中生產(chǎn)車間的師傅認真地給我講解了各個部件的工作原理和作用,讓我們是受益匪淺,正確的引導(dǎo)我們進入畢業(yè)設(shè)計階段。在設(shè)計過程中,我翻閱了很多與我課題相關(guān)的資料,同時將以前所學(xué)的有直接聯(lián)系的相關(guān)專業(yè)科目認真的溫習(xí)了一邊,豐富了許多理論方面的知識。這次設(shè)計使我四年中學(xué)到的基礎(chǔ)知識得到了一次綜合的應(yīng)用,使學(xué)過的知識結(jié)構(gòu)得到了科學(xué)的組合,同時也從理論到實踐發(fā)生了一次質(zhì)的飛躍,可以說這次設(shè)計是理論知識與實踐運用之間相互過渡的橋梁,是我們即將踏上工作崗位的臺階。
在畢業(yè)設(shè)計的過程中,我發(fā)現(xiàn)自身的許多不足,理論知識不夠扎實,設(shè)計經(jīng)驗不足,同時又缺乏實踐工作的磨礪,從而導(dǎo)致在設(shè)計時難以做出正確的選擇,對課題的內(nèi)容茫然不知所措。對資料的應(yīng)用也不夠確切,對設(shè)計產(chǎn)品的具體形狀、運作方式、性能指標(biāo)也不能有一個準(zhǔn)確的定位。缺乏對具體產(chǎn)品的想象力,當(dāng)查閱有關(guān)資料時, 設(shè)計思維又受到書本內(nèi)容的束搏,不能得到擴展,始終局限于個別的、單一的理論或?qū)嶓w。這一切都是可能導(dǎo)致我本次設(shè)計的不足之處,懇請老師和同學(xué)指正。
在整個設(shè)計過程中,胡老師總是耐心地給我們講解有關(guān)方面的知識,及時了解我們設(shè)計中遇到的難題,使我們在短時間內(nèi)完成設(shè)計工作。同時她還教導(dǎo)我們不管是在以后的工作還是學(xué)習(xí)中,都要保持治學(xué)嚴謹?shù)膽B(tài)度。在歷經(jīng)兩個多月的設(shè)計過程中,她一直為我熱心地指導(dǎo),經(jīng)常為我解答一系列的疑難問題,以及指導(dǎo)我設(shè)計思路。另外,本次畢業(yè)設(shè)計的圓滿結(jié)束,也離不開我們本小組其他成員的幫助。我和他們在一起做畢業(yè)設(shè)計時,經(jīng)常互相交流,共同探討問題,從中我也得到了他們的許多幫助。在此,我衷心地向各位指導(dǎo)老師和我同組人表示感謝!
由于自己能力所限,時間倉促,設(shè)計中還存在許多不足之處,懇請各位老師同學(xué)給予批評指正。
參考文獻
[1] 黃大宇,梅瑛. 機械設(shè)計課程設(shè)計.吉林:吉林大學(xué)出版社,2006.
[2] 成大先. 機械設(shè)計手冊 單行版 機械傳動.北京:化工工業(yè)出版社,2004.
[3] 成大先. 機械設(shè)計手冊 單行版 軸及其聯(lián)接.北京:化工工業(yè)出版社,2004.
[4] 成大先. 機械設(shè)計手冊 單行版 軸承.北京:化工工業(yè)出版社,2004.
[5] 濮良貴,紀名剛.機械設(shè)計.北京:高等教育出版社,2001.
[6] 沈世德. 機械原理.北京:機械工業(yè)出版社,2001.
[7] 瞿燕南,機械制造技術(shù). 北京:機械工業(yè)出版社,2001.
[8] 徐 灝. 機械設(shè)計手冊. 北京:機械工業(yè)出版社,1991.
[9] 機械工程手冊,電機工程手冊編輯委員會. 機械工程手冊. 北京:機械工業(yè)出版社,1995.
[10] 徐 灝. 新編機械設(shè)計師手冊. 北京:機械工業(yè)出版社,1995.
[11] 胡家秀. 機械零件設(shè)計實用手冊. 北京:機械工業(yè)出版社,1999.
[12] 李益民. 機械制造工藝設(shè)計手冊. 北京:機械工業(yè)出版社,1995.
[13] 張耀宸. 機械加工工藝設(shè)計手冊. 北京:航空工業(yè)出版社,1987.
[14] Kuehnle M R. Toroidal Drive Combines Concepts.Product Enfineering. Aug. 1979
[15] 孟憲源. 現(xiàn)代機構(gòu)手冊. 北京:機械工業(yè)出版社,1994.
[16] 徐錦康. 機械設(shè)計.北京:高等教育出版社,2004.
[17] 吉衛(wèi)喜. 機械制造技術(shù). 北京:機械工業(yè)出版社,2001.
[18] 機械制圖,大連理工大學(xué)工程畫教研室.北京:高等教育出版社,2002
23
畢業(yè)設(shè)計英文翻譯
畢業(yè)設(shè)計(論文)譯文
題目名稱: 滾筒式清洗機
院系名稱: 機電學(xué)院
班 級: 機自073
學(xué) 號: 200700314307
學(xué)生姓名: 賀繼南
指導(dǎo)教師: 胡敏
2011 年03月
實驗方法
輻射黑色體理論(Chao et al., 1961)和切削表面理論(Friedman and Lenz, 1970)。隨著敏感的紅外感光膠片的發(fā)展,在一個可被記錄切削側(cè)面溫度場的工具(Boothroyd, 1961)和電視型紅外線敏感的視頻設(shè)備已被哈里斯等人使用(1980年),以熱傳感和半導(dǎo)體量子吸收的原則為基礎(chǔ)的紅外線傳感器的不斷發(fā)展,使得這些傳感器的第二敏感性大于第一次,其時間常數(shù)很小太 - 在微秒到毫秒的范圍之內(nèi)。圖5.21顯示了最新使用的第二類的例子。有兩個傳感器以及開始投入使用,一個是在1毫米至5毫米的波長范圍的敏感型銻化銦,另外一個是從6毫米至13毫米的敏感型碲鎘汞類型,通過與兩個不同的探測器信號比較可以使用溫度測量更敏感的方法。大部分金屬切削溫度已進行了調(diào)查和了解使得更好地了解這個過程。原則上,溫度測量可能用于條件監(jiān)測,例如,警告說如果是天氣太熱導(dǎo)致切割刀具后刀面磨損,然而,尤其是輻射能尺寸,在生產(chǎn)條件,校準(zhǔn)問題以及確保輻射能量途徑從傷口區(qū)到探測器不被打斷的困難,使得以溫度測量為目的方法不夠可靠切削的另一種方式是監(jiān)測聲發(fā)射,這雖然是一個間接的方法,但研究過程的狀態(tài)是一個值得考慮未來。
5.4 聲發(fā)射
材料的活躍形變—例如裂縫的增長,變形夾雜物,快速塑性剪切,甚至晶界,位錯運動都是伴隨著彈性應(yīng)力波的排放而產(chǎn)生。這就是聲發(fā)射(AE)。排放的發(fā)生在一個很寬的頻率范圍內(nèi),但通常是從10萬赫到1兆赫。雖然波幅度很小,但是他們可以被檢測到,通過強烈的壓電材料如鈦酸鋇或壓電陶瓷傳感器制造從,(Pb(ZrxTi1–x)O3; x = 0.5 to 0.6)。圖5.22顯示了傳感器的結(jié)構(gòu)。聲波傳送到壓力傳感器造成直接的壓力E(△L/L),其中E是傳感器的楊氏模量,L是它的長度,△L是它的長度變化。應(yīng)力產(chǎn)生電場
T = g33E(△L/L)(5.7a)
g33是傳感器材料的壓電應(yīng)力系數(shù)。傳感器兩端的電壓是TL,然后
V= g33E△L(5.7b)
g33和E的典型值分別是24.4 × 10-3Vm/ N和58.5GPa,以檢測電壓高達0.01毫伏,這是可能的。將這些值代入方程(5.7b)導(dǎo)致了檢測△L的長度變化的可以小到7 × 10-15米:對于一個L = 10毫米的傳感器來說,即相當(dāng)于擁有7 × 10-13
圖5.22顯示的是聲發(fā)射傳感器的結(jié)構(gòu)
實驗理論方法
的最小應(yīng)變,使用應(yīng)變傳感要比使用鋼絲應(yīng)變計更敏感,敏感的最低檢測應(yīng)變約為10-6。一個AE傳感器電信號處理可分為兩個階段。第一個是通過使用一個低噪聲前置放大器和一個帶通濾波器(≈100千赫到1兆赫)。由此產(chǎn)生的信號通常具有的基礎(chǔ)上的復(fù)雜形式,如圖5.23所示,在處理的第二階段,提取信號的主要特征,例如事件的數(shù)量,電壓超過某一閾值VL,最大電壓VT,或信號能量的脈沖頻率使用聲發(fā)射來進行狀態(tài)監(jiān)測具有許多優(yōu)點。一小部分傳感器,處于策略性部署,能調(diào)查整個機械系統(tǒng)。一個發(fā)射源可以通過不同次數(shù)的排放以到達不同的傳感器。它的高靈敏度已經(jīng)被提到。這也是很容易被記錄的;并且聲發(fā)射測量儀器重量輕而且體積小。然而,它也有一些缺點。這些傳感器必須直接連接到被監(jiān)視系統(tǒng):這會導(dǎo)致長期的可靠性問題。在嘈雜的條件下可以使之成為不可能孤立的事件。聲發(fā)射是很容易受被監(jiān)視材料的狀態(tài)的影響,例如熱處理,預(yù)應(yīng)變和溫度。此外,由于聲發(fā)射事件和被監(jiān)視的系統(tǒng)狀態(tài)兩者關(guān)系的特點并不明顯,甚至比熱輻射測量需要更多的校準(zhǔn)或壓力測量系統(tǒng)。
在加工過程中,聲發(fā)射信號的主要來源是剪切帶,片工具和工具的工作接觸區(qū)域,切屑的破碎與碰撞,及其切削工具的特征。聲發(fā)射信號的功率比較大,一般見于范圍100千赫至300千赫。其基本性能的研究和檢測磨損工具的使用,并且切削已經(jīng)成為大量調(diào)查的主題,例如Iwata和Moriwaki(1977),Kakino(1984),Diei和Dornfeld(1987)。聲發(fā)射的使用潛力可以在圖5.24看出來。它顯示了一個后刀面磨損VB和振幅水平之間的關(guān)系
那就是AE信號會轉(zhuǎn)化0.45%的普通碳素鋼(Miwa,1981)。較大的側(cè)面磨損,較大的聲發(fā)射信號,而與具有耐磨變化切削條件的信號的變化率有關(guān),例如切割速度。
參考文獻
Boothroyd, G.(1961)金屬切削溫度的測定攝影技術(shù)。
英國J. Appl.物理學(xué). 12,238-242.
Chao, B. T., Li, H. L. 和 Trigger, K. J.(1961)對刀腹的表面溫度分布的實驗研究Trans. ASME J. Eng. Ind. 83, 496–503.
Diei,EN和Dornfeld,D. A.(1987)從端面銑削過程的聲發(fā)射—過程變量的影響。Trans ASME J. Eng. Ind. 109, 92–99.
Friedman, M. Y. and Lenz, E.(1970)切屑表面溫度場的測定。
機械工程研究所19(1),395-398.
實驗理論方法
Harris, A., Hastings, W. F.和Mathew, P.(1980)切削溫度的試驗測量。
見于:Proc. Int. Conf. on Manufacturing Engineering,墨爾本,8月25-27日,第30-35。
Iwata, I. and Moriwaki, T.(1977)對聲發(fā)射中的應(yīng)用工具傳感進程的
磨損。機械工程研究所26(1),21-26。
Kakino, K.(1984)金屬切削和磨削過程聲發(fā)射監(jiān)測3,108-116。
Miwa,Y., Inasaki, I. and Yonetsu, S.(1981)用聲發(fā)射信號故障檢測工具的過程,Trans JSME 47, 1680–1689.
Reichenbach, G. S.(1958)實驗的金屬切削溫度分布測量。
Trans ASME 80, 525–540.
Schwerd, F. (1933) Uber die bestimmung des temperaturfeldesbeimspanablauf. Zeitschrift VDI 77,
211–216.
Shaw, M. C. (1984) 金屬切削原理。牛津:Clarendon出版社。
Trent, E. M. (1991) 金屬切削第三版。牛津:北海海涅曼。
Ueda, T., Sato, M. and Nakayama, K. (1998) 單晶鉆石刀具溫度的轉(zhuǎn)變。 CIRP 47(1), 41–44.
Williams, J. E, Smart, E. F. and Milner, D. (1970)冶金的加工,第一部分. Metallurgia
6
力學(xué)進展
6.1簡介
第2章介紹了最初的機械,熱及摩擦學(xué)加工過程的報告。演示實驗的報告研究表明,在剪切面角,摩擦角和前角之間沒有獨特的的關(guān)系;證據(jù)表明這部分可能受主剪切帶加工硬化;切削速度與高溫之間的關(guān)系和高應(yīng)力條件下使摩擦面的摩擦角條件不足的影響。3至5章集中描述了工件和刀具材料的性能,刀具磨損和故障的本質(zhì)和加工后的實驗方法過程。這使得針對描述力學(xué)進展的背景下,導(dǎo)致有能力來預(yù)測從機械加工行為和物理性質(zhì)的工作及其工具。
本章安排了除本介紹之外的三個部分:滑移線場模型,從而使成連續(xù)切屑形成具有很大的啟示,但這最終是令人沮喪的,因為它最終沒有提供去刪除以上所指非唯一性的辦法;考慮到建模的工作流引入應(yīng)力變化的影響這消除了非唯一性,即使只通過一個近似的方式;第一個實例,以對切屑形成的正交模型來擴展更多的一般的三維(非正交)的條件。這是一個第2章與現(xiàn)代數(shù)值(有限元)制作經(jīng)典材料之間的過渡章節(jié)第7章。
6.2滑線場模擬
第2章介紹了兩個早期的平面的剪切角依賴摩擦和斜角的理論。根據(jù)Merchant(1945)(方程(2.9))切屑的形成發(fā)生在一個給定摩擦最低能量的條件下。據(jù)Lee和Shaffer(1951年)(方程(2.10)),剪切面的夾角是由在第二剪切帶相關(guān)的塑性流動摩擦角規(guī)則。Lee和Shaffer的貢獻首次是在slipline的切屑形成磁場模型。
6.2.1 滑移線場理論
滑移線場理論適用于平面應(yīng)變(二維)的塑性流動。材料的力學(xué)性能被簡化為剛性,完全塑料。這就是說,它的彈性模量被認為是不定的(剛性)及其塑性流動時發(fā)生的應(yīng)用是最大剪應(yīng)力達到某一臨界值,k,它不隨條件,如應(yīng)變,應(yīng)變率和溫度流動的變化而變化。對于這樣一個在平面上的理想化材料,應(yīng)變塑性狀態(tài),滑移線場理論發(fā)展的壓力和速度如何可以改變規(guī)則。這些被認為是在詳細附錄1之中。一個簡短的部分在這里給出了摘要,足以使該理論應(yīng)用到加工中。
首先:什么是滑移線和滑移線場;以及他們有用嗎?一個平面材料的應(yīng)力應(yīng)變加載的分析結(jié)論是,在任何一點上都有兩個正交方向,其中剪應(yīng)力方向為最大值。此外,在這些方向直接應(yīng)力是平等的(和平等的靜水壓力)。然而,這些方向可以從一個點到另一個點而改變。如果材料是加載塑性,應(yīng)力狀態(tài)完全是所描述的最大剪應(yīng)力常數(shù)K值,以及方向和靜水壓力各不相同的點。 A線,一般彎曲,沿其長度最大剪應(yīng)力方向都被稱為滑移線。一個滑移線是正交曲線滑移在塑料地帶現(xiàn)有生產(chǎn)線配套。滑線場理論是構(gòu)建在特定情況下的滑移線場(例如規(guī)則加工)和計算領(lǐng)域內(nèi)的靜水壓力的變化之上。
該文章摘自:Metal MachiningTheory and Applications
Thomas Childs
University of Leeds,UK
Katsuhiro Maekawa
Ibaraki University,Japan
Toshiyuki Obikawa
Tokyo Institute of Technology,Japan
Yasuo Yamane
Hiroshima University,Japan
http://www.arnoldpublishers.com
Copublished in North,Central and South America by
John Wiley & Sons Inc.,605 Third Avenue,
New York,NY 10158–0012
Experimental methods
(Chao et al.,1961) and on the chip surface (Friedman and Lenz,1970). With the development of infrared sensitive photographic film,temperature fields on the side face of a chipand tool have been recorded (Boothroyd,1961) and television type infrared sensitive video equipment has been used by Harris et al. (1980).
Infrared sensors have continued to develop,based on both heat sensing and semiconductor quantum absorption principles. The sensitivity of the second of these is greater than the first,and its time constant is quite small too in the range of ms to ms. Figure 5.21 shows a recent example of the use of the second type. Two sensors,anInSb type sensitive in the 1 mm to 5 mm wavelength range and a HgCdTetype,sensitive from 6 mm to 13 mm, were used:more sensitive temperature measurements may be made by comparing the signals from two different detectors.
Most investigations of temperature in metal cutting have been carried out to understand the process better. In principle,temperature measurement might be used for condition monitoring,for example to warn if tool flank wear is leading to too hot cutting conditions. However,particularly for radiant energy measurements and in production conditions,calibration issues and the difficulty of ensuring the radiant energy path from the cutting zone to the detector is not interrupted,make temperature measurement for such a purpose not reliable enough. Monitoring the acoustic emissions from cutting is
Fig. 5.21 Experimental set-up for measuring the temperature of a chip’s back surface at the cutting point, using a diamond tool and infrared light, after Ueda et al. (1998)
Acoustic emission 155
anotherway,albeit an indirect method,to study the state of the process,and this is considered next.
5.4Acoustic emission
The dynamic deformation of materials – for example the growth of cracks,the deformation of inclusions,rapid plastic shear,even grain boundary and dislocation movements is accompanied by the emission of elastic stress waves. This is acoustic emission (AE).Emissions occur over a wide frequency range but typically from 100kHz to 1MHz.Although the waves are of very small amplitude,they can be detected by sensors madefrom strongly piezoelectric materials,such as BaTiO3 or PZT (Pb(ZrxTi1–x)O3; x = 0.5 to0.6).
Figure 5.22 shows the structure of a sensor. An acoustic wave transmitted into thesensor causes a direct stressE(DL/L) where E is the sensor’s Young’s modulus, L is itlength and DL is its change in length. The stress creates an electric field
T = g33E(DL/L)(5.7a)
where g33 is the sensor material’s piezoelectric stress coefficient. The voltage across thesensor,TL,is then
V = g33EDL (5.7b)
Typical values of g33 and E for PZT are 24.4 × 10–3 Vm/N and 58.5GPa. It is possible,withamplification,to detect voltages as small as 0.01 mV. These values substituted intoequation (5.7b) lead to the possibility of detecting length changes DL as small as 7 × 10–15m:for a sensor with L = 10mm,that is equivalent to a minimum strain of 7 × 10–13. AE
Fig. 5.22 Structure of an AE sensor
156 Experimental methods
Fig. 5.23 An example of an AE signal and signal processingstrain sensing is much more sensitive than using wire strain gauges,for which the minimum detectable strain is around 10–6.
The electrical signal from an AE sensor is processed in two stages. It is first passedthrough a low noise pre-amplifier and a band-pass filter (≈100kHz to 1MHz). The resulting signal typically has a complicated form,based on events,such as in Figure 5.23. In thesecond stage of processing,the main features of the signal are extracted,such as thenumber of events,the frequency of pulses with a voltage exceeding some threshold valueVL,the maximum voltage VT,or the signal energy.
The use of acoustic emission for condition monitoring has a number of advantages. Asmall number of sensors,strategicallyplaced,can survey the whole of a mechanicalsystem. The source of an emission can be located from the different times the emissiontakes to reach different sensors. Its high sensitivity has already been mentioned. It is alsoeasy to record; and acoustic emission measuring instruments are lightweight and small.However,it also has some disadvantages. The sensors must be attached directly to thesystem being monitored:this leads to long term reliability problems. In noisy conditions itcan become impossible to isolate events. Acoustic emission is easily influenced by thestate of the material being monitored,its heat treatment,pre-strain and temperature. Inaddition,because it is not obvious what is the relationship between the characteristics ofacoustic emission events and the state of the system being monitored,there is even moreneed to calibrate or train the measuring system than there is with thermal radiationmeasurements.
In machining,the main sources of AE signals are the primary shear zone,the chip–tooland tool–work contact areas,the breaking and collision of chips,and the chipping andfracture of the tool. AE signals of large power are generally observed in the range 100kHzto 300kHz. Investigations of their basic properties and uses in detecting tool wear andchipping have been the subject of numerous investigations,for example Iwata andMoriwaki (1977),Kakino (1984) and Diei and Dornfeld (1987). The potential of using AE
is seen in Figure 5.24. It shows a relation between flank wear VB and the amplitude level
References 157
Fig. 5.24 Relation between flank wear VB and amplitude of AE signal, after Miwa et al. (1981)of an AE signal in turning a 0.45% plain carbon steel (Miwa,1981). The larger the flankwear,the larger the AE signal,while the rate of change of signal with wear changes withthe cutting conditions,such as cutting speed.
References
Boothroyd,G. (1961) Photographic technique for the determination of metal cutting temperatures.British J. Appl. Phys. 12,238–242.
Chao,B.T.,Li,H.L. and Trigger,K.J. (1961) An experimental investigation of temperature distribution at tool flank surface. Trans. ASME J. Eng. Ind. 83,496–503.
Diei,E.N. and Dornfeld,D.A. (1987) Acoustic emission from the face milling process – the effectsof process variables. Trans ASME J. Eng. Ind. 109,92–99.
Friedman,M.Y. and Lenz,E. (1970) Determination of temperature field on upper
chip face. AnnalsCIRP 19(1),395–398.
158 Experimental methods
Harris,A.,Hastings,W.F. and Mathew,P. (1980) The experimental measurement of cutting temperature. In: Proc. Int. Conf. on Manufacturing Engineering,Melbourne,25–27 August,pp. 30–35.
Iwata,I. and Moriwaki,T. (1977) An application of acoustic emission to in-process sensing of toolwear. Annals CIRP 26(1),21–26.
Kakino,K. (1984) Monitoring of metal cutting and grinding processes by acoustic emission. J.Acoustic Emission 3,108–116.
Miwa,Y.,Inasaki,I. and Yonetsu,S. (1981) In-process detection of tool failure by acoustic emissionsignal. Trans JSME 47,1680–1689.
Reichenbach,G.S. (1958) Experimental measurement of metal cutting temperature distribution.Trans ASME 80,525–540.
Schwerd,F. (1933) Uber die bestimmung des temperaturfeldesbeimspanablauf. Zeitschrift VDI 77,211–216.
Shaw,M.C. (1984) Metal Cutting Principles. Oxford:Clarendon Press.Trent,E.M. (1991) Metal Cutting,3rd edn. Oxford:Butterworth Heinemann.Ueda,T.,Sato,M. and Nakayama,K. (1998)
The temperature of a single crystal diamond tool inturning. Annals CIRP 47(1),41–44.
Williams,J.E,Smart,E.F. and Milner,D. (1970) The metallurgy of machining,Part 1. Metallurgia
6
Advances in mechanics
6.1Introduction
Chapter 2 presented initial mechanical,thermal and tribological considerations of themachining process. It reported on experimental studies that demonstrate that there is nounique relation between shear plane angle,friction angle and rake angle; on evidence thatpart of this may be the influence of workhardening in the primary shear zone; on hightemperature generation at high cutting speeds; and on the high stress conditions on the rakeface that make a friction angle an inadequate descriptor of friction conditions there.Chapters 3 to 5 concentrated on describing the properties of work and tool materials,thenature of tool wear and failure and on experimental methods of following the machiningprocess. This sets the background against which advances in mechanics may be described,leading to the ability to predict machining behaviours from the mechanical and physicalproperties of the work and tool.
This chapter is arranged in three sections in addition to this introduction:an account ofslip-line field modelling,which gives much insight into continuous chip formation butwhich is ultimately frustrating as it offers no way to remove the non-uniqueness referredto above; an account of the introduction of work flow stressvariation effects intomodelling that removes the non-uniqueness,even though only in an approximate manner in thefirst instance; and an extension of modelling from orthogonal chip formation to moregeneral three-dimensional (non-orthogonal) conditions. It is a bridging chapter,betweenthe classical material of Chapter 2 and modern numerical (finite element) modelling inChapter 7.
6.2Slip-line field modeling
Chapter 2 presented two early theories of the dependence of the shear plane angle on thefriction and rake angles. According to Merchant (1945) (equation (2.9)) chip formationoccurs at a minimum energy for a given friction condition. According to Lee and Shaffer(1951) (equation (2.10)) the shear plane angle is related to the friction angle by plastic flowrules in the secondary shear zone. Lee and Shaffer’s contribution was the first of the slipline field models of chip formation.
160 Advances in mechanics
6.2.1Slip-line field theory
Slip-line field theory applies to plane strain (two-dimensional) plastic flows. A material’smechanical properties are simplified to rigid,perfectly plastic. That is to say,its elasticmoduli are assumed to be infinite (rigid) and its plastic flow occurs when the applied maximum shear stress reaches some critical value, k,which does not vary with conditions ofthe flow such as strain,strain-rate or temperature. For such an idealized material,in a planestrain plastic state,slip-line field theory develops rules for how stress and velocity can vary
from place to place. These are considered in detail in Appendix 1. A brief and partialsummary is given here,sufficient to enable the application of the theory to machining tobe understood.
First of all:what are a slip-line and a slip-line field; and how are they useful? The analysis of stress in a plane strain loaded material concludes that at any point there are two orthogonal directions in which the shear stresses are maximum. Further,the direct stresses are equal(and equal to the hydrostatic pressure) in those directions. However,those directions can varyfrom point to point. If the material is loaded plastically,the state of stress is completelydescribed by the constant value k of maximum shear stress,and how its direction and thehydrostatic pressure vary from point to point. A line,generallycurved,which is tangentialall along its length to directions of maximum shear stress is known as a slip-line. A slip-linefield is the complete set of orthogonal curvilinear slip-lines existing in a plastic region. Slip-line field theory provides rules for constructing the slip-line field in particular cases (such asmachining) and for calculating how hydrostatic pressure varies within the field.
Article from :Metal MachiningTheory and Applications
Thomas Childs
University of Leeds,UK
Katsuhiro Maekawa
Ibaraki University,Japan
Toshiyuki Obikawa
Tokyo Institute of Technology,Japan
Yasuo Yamane
Hiroshima University,Japan
http://www.arnoldpublishers.com
Copublished in North,Central and South America by
John Wiley & Sons Inc.,605 Third Avenue,
New York,NY 10158–0012
16
收藏