高中數(shù)學(xué) 第三章 圓錐曲線與方程章末復(fù)習(xí)提升課件 北師大版選修2-1.ppt
《高中數(shù)學(xué) 第三章 圓錐曲線與方程章末復(fù)習(xí)提升課件 北師大版選修2-1.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三章 圓錐曲線與方程章末復(fù)習(xí)提升課件 北師大版選修2-1.ppt(27頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第三章 圓錐曲線與方程,章末復(fù)習(xí)提升,,,,知識(shí)網(wǎng)絡(luò) 整體構(gòu)建,要點(diǎn)歸納 主干梳理,方法總結(jié) 思想構(gòu)建,,欄目索引,知識(shí)網(wǎng)絡(luò) 整體構(gòu)建,,返回,要點(diǎn)歸納 主干梳理,1.能夠熟練使用直接法、待定系數(shù)法、定義法求橢圓方程;能夠利用“坐標(biāo)法”研究橢圓的基本性質(zhì);能夠利用數(shù)形結(jié)合思想、分類討論思想、參數(shù)法解決橢圓中的有關(guān)問題. 2.能夠根據(jù)所給的幾何條件熟練地求出雙曲線方程,并能靈活運(yùn)用雙曲線定義、參數(shù)間的關(guān)系解決相關(guān)問題;準(zhǔn)確理解參數(shù)a、b、c、e的關(guān)系、漸近線及其幾何意義,并靈活運(yùn)用. 3.會(huì)根據(jù)方程形式或焦點(diǎn)位置判斷拋物線的標(biāo)準(zhǔn)方程的類型;會(huì)根據(jù)拋物線的標(biāo)準(zhǔn)方程確定其幾何性質(zhì)以及會(huì)由幾何性質(zhì)確定拋物線的方程.了解拋物線的一些實(shí)際應(yīng)用.,,返回,方法總結(jié) 思想構(gòu)建,1.數(shù)形結(jié)合思想 “數(shù)形結(jié)合”指的是在處理數(shù)學(xué)問題時(shí),能夠?qū)⒊橄蟮臄?shù)學(xué)語言與直觀的幾何圖形有機(jī)結(jié)合起來思索,促使抽象思維和形象思維的和諧結(jié)合,通過對(duì)規(guī)范圖形或示意圖形的觀察分析,化抽象為直觀,化直觀為精確,從而使問題得到解決.判斷直線與圓錐曲線的位置關(guān)系、求最值等問題,可以結(jié)合圖形,運(yùn)用數(shù)形結(jié)合思想,化抽象為具體,使問題變得簡單.,,解析答案,A.(1,3) B.(1,3] C.(3,+∞) D.[3,+∞),解析 如圖所示,由|PF1|=2|PF2|知P在雙曲線的右支上,則|PF1|-|PF2|=2a, 又|PF1|=2|PF2|,∴|PF1|=4a,|PF2|=2a, 在△F1PF2中,由余弦定理得,∵0∠F1PF2≤π,且當(dāng)點(diǎn)P是雙曲線的頂點(diǎn)時(shí),∠F1PF2=π, ∴-1≤cos∠F1PF21,,答案 B,,解析答案,跟蹤訓(xùn)練1 拋物線y2=2px(p0)上有A(x1,y1),B(x2,y2),C(x3,y3)三點(diǎn),F(xiàn)是它的焦點(diǎn),若|AF|,|BF|,|CF|成等差數(shù)列,則( ) A.x1,x2,x3成等差數(shù)列 B.y1,y2,y3成等差數(shù)列 C.x1,x3,x2成等差數(shù)列 D.y1,y3,y2成等差數(shù)列,解析 如圖,過A、B、C分別作準(zhǔn)線的垂線,垂足分別為A′,B′,C′,由拋物線定義知: |AF|=|AA′|,|BF|=|BB′|,|CF|=|CC′|. ∵2|BF|=|AF|+|CF|, ∴2|BB′|=|AA′|+|CC′|.,答案 A,2.分類討論思想 分類討論思想是指當(dāng)所給的對(duì)象不能進(jìn)行統(tǒng)一研究時(shí),我們就需要對(duì)研究的對(duì)象進(jìn)行分類,然后對(duì)每一類進(jìn)行研究,得出每一類的結(jié)論,最后綜合各類的結(jié)果得到整個(gè)問題的結(jié)果.如曲線方程中含有的參數(shù)的取值范圍不同,對(duì)應(yīng)的曲線也不同,這時(shí)要討論字母的取值范圍,有時(shí)焦點(diǎn)位置也要討論,直線的斜率是否存在也需要討論.,,解析答案,,解析答案,跟蹤訓(xùn)練2 求適合下列條件的橢圓的標(biāo)準(zhǔn)方程. (1)橢圓的長軸長是短軸長的2倍,且過點(diǎn)P(2,-6);,由已知得a=2b.①,由①②得a2=148,b2=37或a2=52,b2=13.,,解析答案,解 當(dāng)焦點(diǎn)在x軸上時(shí),∵橢圓過點(diǎn)P(3,0),∴a=3.,當(dāng)焦點(diǎn)在y軸上時(shí),∵橢圓過點(diǎn)P(3,0),∴b=3.,3.函數(shù)與方程思想 圓錐曲線中的許多問題,若能運(yùn)用函數(shù)與方程的思想去分析,則往往能較快地找到解題的突破口.用函數(shù)思想解決圓錐曲線中的有關(guān)定值、最值問題,最值問題是高中數(shù)學(xué)中常見的問題,在圓錐曲線問題中也不例外,而函數(shù)思想是解決最值問題最有利的武器.我們通??捎媒⒛繕?biāo)函數(shù)的方法解有關(guān)圓錐曲線的最值問題. 方程思想是從分析問題的數(shù)量關(guān)系入手,通過聯(lián)想與類比,將問題中的條件轉(zhuǎn)化為方程或方程組,然后通過解方程或方程組使問題獲解,方程思想是高中數(shù)學(xué)中最基本、最重要的思想方法之一,在高考中占有非常重要的地位.在求圓錐曲線方程、直線與圓錐曲線的位置關(guān)系的問題中經(jīng)常利用方程或方程組來解決.,,解析答案,解 方法一 設(shè)A(x1,y1),B(x2,y2),代入橢圓方程并作差,得a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0.①,,解析答案,直線x+y-1=0的斜率k=-1.,聯(lián)立ax2+by2=1與x+y-1=0可得(a+b)x2-2bx+b-1=0. 且由已知得x1,x2是方程(a+b)x2-2bx+b-1=0的兩根,,,解析答案,且直線AB的斜率k=-1,,,解析答案,3,4.化歸與轉(zhuǎn)化思想 將所研究的對(duì)象在一定條件下轉(zhuǎn)化并歸結(jié)為另一種研究對(duì)象的思想方法稱之為化歸與轉(zhuǎn)化思想.一般將有待解決的問題進(jìn)行轉(zhuǎn)化,使之成為大家熟悉的或容易解決的問題模式.轉(zhuǎn)化與化歸思想在圓錐曲線中經(jīng)常應(yīng)用,如把直線與圓錐曲線的位置關(guān)系問題轉(zhuǎn)化為方程組的解的個(gè)數(shù)問題,把求參數(shù)的取值范圍問題轉(zhuǎn)化為解不等式(組)問題,把陌生的問題轉(zhuǎn)化為熟悉的問題,需要注意轉(zhuǎn)化的等價(jià)性.,,解析答案,例4 已知點(diǎn)A(4,-2),F(xiàn)為拋物線y2=8x的焦點(diǎn),點(diǎn)M在拋物線上移動(dòng),當(dāng)|MA|+|MF|取最小值時(shí),點(diǎn)M的坐標(biāo)為( ),解析 過點(diǎn)M作準(zhǔn)線l的垂線,垂足為E,由拋物線定義知|MF|=|ME|. 當(dāng)點(diǎn)M在拋物線上移動(dòng)時(shí),|MF|+|MA|的值在變化, 顯然M移到M′,AM′∥Ox時(shí), A,M,E共線,此時(shí)|ME|+|MA|最小,,D,,解析答案,(1)求點(diǎn)Q(x,y)的軌跡C的方程; 解 由題意得,,,解析答案,(2)設(shè)曲線C與直線y=kx+m相交于不同的兩點(diǎn)M、N,又點(diǎn)A(0,-1),當(dāng)|AM|=|AN|時(shí),求實(shí)數(shù)m的取值范圍.,,解析答案,由于直線與橢圓有兩個(gè)不同的交點(diǎn), ∴Δ0,即m23k2+1.①,又|AM|=|AN|,∴AP⊥MN.,將②代入①得2mm2,解得0m2,,(ⅱ)當(dāng)k=0時(shí),|AM|=|AN|, ∴AP⊥MN,m23k2+1即為m21,解得-1m1.,當(dāng)k=0時(shí),m的取值范圍是(-1,1).,,課堂小結(jié),1.圓錐曲線的定義是圓錐曲線問題的根本,利用圓錐曲線的定義解題是考查圓錐曲線的一個(gè)重要命題點(diǎn). 2.圓錐曲線的標(biāo)準(zhǔn)方程是用代數(shù)方法研究圓錐曲線的幾何性質(zhì)的基礎(chǔ),對(duì)圓錐曲線標(biāo)準(zhǔn)方程的考查方式有兩種:一是在解答題中作為試題的入口進(jìn)行考查;二是在選擇題和填空題中結(jié)合圓錐曲線的簡單幾何性質(zhì)進(jìn)行考查. 3.雖然考綱中沒有直接要求關(guān)于直線與圓錐曲線相結(jié)合的知識(shí),但直線與圓錐曲線是密不可分的,如雙曲線的漸近線、拋物線的準(zhǔn)線、圓錐曲線的對(duì)稱軸等都是直線.考試不但不回避直線與圓錐曲線,而且在試題中進(jìn)行重點(diǎn)考查,考查方式既可以是選擇題、填空題,也可以是解答題.,,返回,4.考綱對(duì)曲線與方程的要求是“了解方程的曲線與曲線的方程的對(duì)應(yīng)關(guān)系”,考試對(duì)曲線與方程的考查主要體現(xiàn)在以利用圓錐曲線的定義、待定系數(shù)法、直接法和代入法等方法求圓錐曲線的方程. 5.對(duì)圓錐曲線的考查是綜合性的,這種綜合性體現(xiàn)在圓錐曲線、直線、圓、平面向量、不等式等知識(shí)的相互交匯,對(duì)圓錐曲線的綜合考查主要是在解答題中進(jìn)行,一般以橢圓或者拋物線為依托,全面考查圓錐曲線與方程的求法、直線與圓錐曲線的位置關(guān)系,考查函數(shù)、方程、不等式、平面向量等在解決問題中的綜合運(yùn)用.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第三章 圓錐曲線與方程章末復(fù)習(xí)提升課件 北師大版選修2-1 第三 圓錐曲線 方程 復(fù)習(xí) 提升 課件 北師大 選修
鏈接地址:http://www.szxfmmzy.com/p-2437579.html