2019-2020年高中數(shù)學(xué) 3.4.3直線與圓錐曲線交點(diǎn)課時(shí)訓(xùn)練 北師大選修2-1.doc
《2019-2020年高中數(shù)學(xué) 3.4.3直線與圓錐曲線交點(diǎn)課時(shí)訓(xùn)練 北師大選修2-1.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 3.4.3直線與圓錐曲線交點(diǎn)課時(shí)訓(xùn)練 北師大選修2-1.doc(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 3.4.3直線與圓錐曲線交點(diǎn)課時(shí)訓(xùn)練 北師大選修2-1 一、選擇題 1.斜率為1的直線l與橢圓+y2=1相交于A、B兩點(diǎn),則|AB|的最大值為( ) A.2 B. C. D. 2.拋物線y=ax2與直線y=kx+b(k≠0)交于A、B兩點(diǎn),且此兩點(diǎn)的橫坐標(biāo)分別為x1,x2,直線與x軸交點(diǎn)的橫坐標(biāo)是x3,則恒有 ( ) A.x3=x1+x2 B.x1x2=x1x3+x2x3 C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0 3. 過拋物線的焦點(diǎn)作一條直線與拋物線相交于A、B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線 ( ) A.有且僅有一條 B.有且僅有兩條 C.有無窮多條 D.不存在 4. 設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、、F2,過F2作橢圓長軸的垂線交橢圓于點(diǎn)P,若△F1PF2為等腰直角三角形,則橢圓的離心率是 ( ) (A) (B) (C) (D) 二、填空題 5.已知兩點(diǎn)M(1,)、N(-4,-),給出下列曲線方程:①4x+2y-1=0, ②x2+y2=3,③+y2=1,④-y2=1,在曲線上存在點(diǎn)P滿足|MP|=|NP|的所有曲線方程是_________. 6.在拋物線y2=16x內(nèi),通過點(diǎn)(2,1)且在此點(diǎn)被平分的弦所在直線的方程是_________. 三、解答題 7. 已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2) (1)求過P(1,2)點(diǎn)的直線l的斜率取值范圍,使l與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒有交點(diǎn). (2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在. 8.如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列. (1)求該弦橢圓的方程; (2)求弦AC中點(diǎn)的橫坐標(biāo); (3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍. 一、選擇題 1.. C 2. B 3.B 4.D 二、填空題 5.解析:點(diǎn)P在線段MN的垂直平分線上,判斷MN的垂直平分線于所給曲線是否存在交點(diǎn). 答案:②③④ 6.解析:設(shè)所求直線與y2=16x相交于點(diǎn)A、B,且A(x1,y1),B(x2,y2),代入拋物線方程得y12=16x1,y22=16x2,兩式相減得,(y1+y2)(y1-y2)=16(x1-x2). 即kAB=8. 故所求直線方程為y=8x-15. 答案:8x-y-15=0 三、解答題 7.解:(1)當(dāng)直線l的斜率不存在時(shí),l的方程為x=1,與曲線C有一個(gè)交點(diǎn).當(dāng)l的斜率存在時(shí),設(shè)直線l的方程為y-2=k(x-1),代入C的方程,并整理得 (2-k2)x2+2(k2-2k)x-k2+4k-6=0 (*) (ⅰ)當(dāng)2-k2=0,即k=時(shí),方程(*)有一個(gè)根,l與C有一個(gè)交點(diǎn) (ⅱ)當(dāng)2-k2≠0,即k≠時(shí) Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k-6)=16(3-2k) ①當(dāng)Δ=0,即3-2k=0,k=時(shí),方程(*)有一個(gè)實(shí)根,l與C有一個(gè)交點(diǎn). ②當(dāng)Δ>0,即k<,又k≠,故當(dāng)k<-或-<k<或<k<時(shí),方程(*)有兩不等實(shí)根,l與C有兩個(gè)交點(diǎn). ③當(dāng)Δ<0,即k>時(shí),方程(*)無解,l與C無交點(diǎn). 綜上知:當(dāng)k=,或k=,或k不存在時(shí),l與C只有一個(gè)交點(diǎn); 當(dāng)<k<,或-<k<,或k<-時(shí),l與C有兩個(gè)交點(diǎn); 當(dāng)k>時(shí),l與C沒有交點(diǎn). (2)假設(shè)以Q為中點(diǎn)的弦存在,設(shè)為AB,且A(x1,y1),B(x2,y2),則2x12-y12=2,2x22-y22=2兩式相減得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB==2 但漸近線斜率為,結(jié)合圖形知直線AB與C無交點(diǎn),所以假設(shè)不正確,即以Q為中點(diǎn)的弦不存在. 8.解:(1)由橢圓定義及條件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3. 故橢圓方程為=1. (2)由點(diǎn)B(4,yB)在橢圓上,得|F2B|=|yB|=.因?yàn)闄E圓右準(zhǔn)線方程為x=,離心率為,根據(jù)橢圓定義,有|F2A|=(-x1),|F2C|=(-x2), 由|F2A|、|F2B|、|F2C|成等差數(shù)列,得 (-x1)+(-x2)=2,由此得出:x1+x2=8. 設(shè)弦AC的中點(diǎn)為P(x0,y0),則x0==4. (3)解法一:由A(x1,y1),C(x2,y2)在橢圓上. ① ② 得 ①-②得9(x12-x22)+25(y12-y22)=0, 即9=0(x1≠x2) 將 (k≠0)代入上式,得94+25y0(-)=0 (k≠0) 即k=y0(當(dāng)k=0時(shí)也成立). 由點(diǎn)P(4,y0)在弦AC的垂直平分線上,得y0=4k+m,所以m=y0-4k=y0-y0=-y0. 由點(diǎn)P(4,y0)在線段BB′(B′與B關(guān)于x軸對稱)的內(nèi)部,得-<y0<,所以-<m<. 解法二:因?yàn)橄褹C的中點(diǎn)為P(4,y0),所以直線AC的方程為 y-y0=-(x-4)(k≠0) ③ 將③代入橢圓方程=1,得 (9k2+25)x2-50(ky0+4)x+25(ky0+4)2-259k2=0 所以x1+x2==8,解得k=y0.(當(dāng)k=0時(shí)也成立) (以下同解法一).- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 3.4.3直線與圓錐曲線交點(diǎn)課時(shí)訓(xùn)練 北師大選修2-1 2019 2020 年高 數(shù)學(xué) 3.4 直線 圓錐曲線 交點(diǎn) 課時(shí) 訓(xùn)練 北師大 選修
鏈接地址:http://www.szxfmmzy.com/p-2505112.html