2019-2020年高中數(shù)學(xué) 第1章 第12課時(shí) 函數(shù)y=Asin(ωx+φ)的圖象課時(shí)作業(yè)(含解析)新人教A版必修4.doc
《2019-2020年高中數(shù)學(xué) 第1章 第12課時(shí) 函數(shù)y=Asin(ωx+φ)的圖象課時(shí)作業(yè)(含解析)新人教A版必修4.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第1章 第12課時(shí) 函數(shù)y=Asin(ωx+φ)的圖象課時(shí)作業(yè)(含解析)新人教A版必修4.doc(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第1章 第12課時(shí) 函數(shù)y=Asin(ωx+φ)的圖象課時(shí)作業(yè)(含解析)新人教A版必修4 1.為了得到函數(shù)f(x)=4sin的圖象,只需將g(x)=4sin2x圖象上的所有點(diǎn)( ) A.向右平移個(gè)單位長(zhǎng)度 B.向左平移個(gè)單位長(zhǎng)度 C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度 解析:∵f(x)=4sin,∴要得到f(x)的圖象,只需將g(x)的圖象向右平移個(gè)單位長(zhǎng)度,故選D. 答案:D 2.把函數(shù)f(x)=sin的圖象向左平移φ(0<φ<π)個(gè)單位可以得到函數(shù)g(x)的圖象.若g(x)的圖象關(guān)于y軸對(duì)稱(chēng),則φ的值為( ) A. B. C.或 D.或 解析:由題意,得g(x)=sin =sin. ∵g(x)的圖象關(guān)于y軸對(duì)稱(chēng),∴g(x)為偶函數(shù), ∴2φ-=kπ+(k∈Z). ∴φ=+(k∈Z). 由k=0,得φ=;由k=1,得φ=,故選D. 答案:D 3.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分函數(shù)圖象如圖所示,為了得到函數(shù)f(x)的圖象,只需將g(x)=sin(ωx)的圖象( ) A.向右平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度 C.向左平移個(gè)單位長(zhǎng)度 D.向左平移個(gè)單位長(zhǎng)度 解析:設(shè)f(x)的最小正周期為T(mén),則由圖象可知=-=,T=π. ω==2.由sin=0,|φ|<得φ=. 所以f(x)=sin=sin,g(x)=sin(2x),所以要得到f(x)的圖象,只需將g(x)的圖象向左平移個(gè)單位長(zhǎng)度,故選C. 答案:C 4.已知函數(shù)y=2sin(ω>0),在曲線y=f(x)與直線y=1的交點(diǎn)中,若相鄰交點(diǎn)距離的最小值為,則f(x)的最小正周期為( ) A. B. C.π D.2π 解析:由題意,得f=f(0)=1,即2sin=1,sin=,所以ω+=或.因?yàn)棣兀?,所以ω=2,f(x)的最小正周期為T(mén)==π,故選C. 答案:C 5.已知函數(shù)f(x)=sin,若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,則a的值是( ) A. B. C. D. 解析:因?yàn)閒(x+a)=f(x-a),所以函數(shù)f(x)=sin的周期為2a,所以2a=,即a=,故選D. 答案:D 6.函數(shù)y=sin(ωx+φ)(ω>0)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),且在x=處取得函數(shù)最小值,則ω的可能取值為( ) A.2 B.5 C.7 D.9 解析:由題意,得sin=0,且sin=-1,所以ω+φ=kπ(k∈Z),ω+φ=2k′π-(k′∈Z). 兩式相減,得ω=(k-2k′)π+,即ω=6(k-2k′)+3. 當(dāng)k-2k′=1時(shí),ω=9,故選D. 答案:D 7.若函數(shù)f(x)=3cos(ωx+φ)對(duì)任意實(shí)數(shù)x,都有f=f,則f=( ) A.-3 B.0 C.3 D.3 解析:由題意可知,f(x)的圖象關(guān)于直線x=對(duì)稱(chēng),所以在x=處f(x)取得最大值或最小值,即f=3,故選D. 答案:D 8.已知函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖所示,則f(x)的解析式是( ) A.f(x)=2sin B.f(x)=2sin C.f(x)=2sin D.f(x)=2sin 解析:由圖象可知=-=,所以T=2π,ω==1.又sin=0,且0<φ<,所以φ=.由圖象可知A=2,所以f(x)=2sin,故選B. 答案:B 9.已知函數(shù)f(x)=3sin(ω>0)和g(x)=2cos(2x+φ)+1的圖象的對(duì)稱(chēng)軸完全相同,若x∈,則f(x)的取值范圍是__________. 解析:易知ω=2. 因?yàn)閤∈,所以2x-∈,由三角函數(shù)圖象知: f(x)的最小值為3sin=-,最大值為3sin=3, 所以f(x)的取值范圍是. 答案: 10.已知函數(shù)f(x)=Asin(A>0,ω>0)的最小正周期為π,且x∈時(shí),f(x)的最大值為4. (1)求A的值; (2)求函數(shù)f(x)在[-π,0]上的單調(diào)遞增區(qū)間. 解析:(1)由T=π=,得ω=2, 所以f(x)=Asin. ∵x∈,∴≤2x+≤π, ∴sin∈,∴fmax(x)=A=4. (2)由(1)得f(x)=4sin. ∵-+2kπ≤2x+≤+2kπ, ∴-+kπ≤x≤+kπ. 又x∈[-π,0],故f(x)的增區(qū)間是,. B組 能力提升 11.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分圖象如圖所示.若x1,x2∈,且f(x1)=f(x2)(x1≠x2),則f(x1+x2)=( ) A.1 B. C. D. 解析:由圖象可知A=1,=-=,T=π,ω==2,所以f(x)=sin(2x+φ).又由點(diǎn)在f(x)的圖象上,得sin=0.因?yàn)閨φ|<,所以φ=,f(x)=sin. 由題意,得f(x1+x2)=f=f=sin=,故選D. 答案:D 12.設(shè)函數(shù)f(x)=Asin(ωx+φ),的圖象關(guān)于直線x=對(duì)稱(chēng),它的周期是π,則( ) A.f(x)的圖象過(guò)點(diǎn) B.f(x)在上是減函數(shù) C.f(x)的一個(gè)對(duì)稱(chēng)點(diǎn)中心是 D.f(x)的最大值是A 解析:因?yàn)橹芷谑铅?,所以π=,即ω?, 所以f(x)=Asin(2x+φ),又因?yàn)楹瘮?shù)f(x)=Asin(ωx+φ)的圖象關(guān)于直線x=對(duì)稱(chēng), 所以Asin=A,即φ=, 所以f(x)=Asin, 所以f(x)的一個(gè)對(duì)稱(chēng)點(diǎn)中心是,故選C. 答案:C 13.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分圖象如右圖所示. (1)求函數(shù)f(x)的解析式; (2)求函數(shù)g(x)=f-f的單調(diào)遞增區(qū)間. 解析:(1)由題設(shè)圖象知,周期T=2=π,所以ω==2,因?yàn)辄c(diǎn)在函數(shù)圖象上,所以Asin=0,即sin=0. 又因?yàn)?<φ<,所以<+φ<,從而+φ=π,即φ=. 又點(diǎn)(0,1)在函數(shù)圖象上,所以Asin=1,得A=2. 故函數(shù)f(x)的解析式為f(x)=2sin. (2)g(x)=2sin-2sin+=2sin2x-2sin=2sin2x-2=sin2x-cos2x=2sin, 由2kπ-≤2x-≤2kπ+,得kπ-≤x≤kπ+,k∈Z. 所以函數(shù)g(x)的單調(diào)遞增區(qū)間是,k∈Z. 14.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分圖象如圖所示,B、C為圖象上相鄰的最高點(diǎn)和最低點(diǎn),將函數(shù)f(x)的圖象向右平移個(gè)單位后得到函數(shù)g(x)的圖象. (1)求f(x)的最小正周期及解析式; (2)求函數(shù)g(x)在上的最大值和最小值. 解析:(1)由圖象知,A=,=-2=,T=6, ω==,故f(x)=sin. 又由f(x)的圖象過(guò)點(diǎn)(2,0),得sin=0. 又因?yàn)閨φ|<,所以φ=, 故f(x)=sin. 所以f(x)的最小正周期為6, f(x)=sin. (2)由題意,得 g(x)=sin=sin. 由x∈,得∈. 故當(dāng)x-=,即x=1時(shí),g(x)取得最大值,且[g(x)]max=; 當(dāng)x-=-,即x=-1時(shí),g(x)取得最小值,且[g(x)]min=-. 所以,g(x)在上的最大值為,最小值為-. 15. 已知f(x)=Asin(ωx+φ)+1(x∈R,A>0,ω>0,0<φ<)的周期為π,且圖象上的一個(gè)最低點(diǎn)為M. (1)求f(x)的解析式; (2)已知f=,α∈[0,π],求cosα的值. 解析:(1)由f(x)=Asin(ωx+φ)+1的周期為π, 則有T==π,得ω=2. ∴f(x)=Asin(2x+φ)+1, ∵函數(shù)圖象有一個(gè)最低點(diǎn)M,A>0, ∴A=2,且2sin+1=-1, 則有2+φ=+2kπ,k∈Z, 解得:φ=+2kπ,k∈Z, ∵0<φ<, ∴φ=, ∴f(x)=2sin+1; (2)由f=,得2sin+1=,得sin=-. ∵0≤α≤π, ∴≤α+≤π, 又sin<0. ∴cos=-=-. ∴cosα==coscos+sinsin=--=-.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 第1章 第12課時(shí) 函數(shù)yAsinx的圖象課時(shí)作業(yè)含解析新人教A版必修4 2019 2020 年高 數(shù)學(xué) 12 課時(shí) 函數(shù) Asin 圖象 作業(yè) 解析 新人
鏈接地址:http://www.szxfmmzy.com/p-2584602.html