2019-2020年高中物理 5.8《 生活中的圓周運(yùn)動(dòng)》優(yōu)秀教案 新人教版必修2.doc
《2019-2020年高中物理 5.8《 生活中的圓周運(yùn)動(dòng)》優(yōu)秀教案 新人教版必修2.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中物理 5.8《 生活中的圓周運(yùn)動(dòng)》優(yōu)秀教案 新人教版必修2.doc(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中物理 5.8《 生活中的圓周運(yùn)動(dòng)》優(yōu)秀教案 新人教版必修2 圓周運(yùn)動(dòng)是生活中普遍存在的一種運(yùn)動(dòng).通過一些生活中存在的圓周運(yùn)動(dòng),讓學(xué)生理解向心力和向心加速度的作用,知道其存在的危害及如何利用.通過對航天器中的失重想象讓學(xué)生理解向心力是由物體所受的合力提供的,任何一種力都有可能提供物體做圓周運(yùn)動(dòng)的向心力.通過對離心運(yùn)動(dòng)的學(xué)習(xí)讓學(xué)生知道離心現(xiàn)象,并能充分利用離心運(yùn)動(dòng)且避免因離心運(yùn)動(dòng)而造成的危害.本節(jié)內(nèi)容著重于知識的理解應(yīng)用,學(xué)生對于一些內(nèi)容不易理解,因此在教學(xué)時(shí)注意用一些貼近學(xué)生的生活實(shí)例或是讓學(xué)生通過動(dòng)手實(shí)驗(yàn)來得到結(jié)論.注意引導(dǎo)學(xué)生應(yīng)用牛頓第二定律和有關(guān)向心力知識分析實(shí)例,使學(xué)生深刻理解向心力的基礎(chǔ)知識;熟練掌握應(yīng)用向心力知識分析兩類圓周運(yùn)動(dòng)模型的步驟和方法.鍛煉學(xué)生觀察、分析、抽象、建模的解決實(shí)際問題的方法和能力;培養(yǎng)學(xué)生的主動(dòng)探索精神、應(yīng)用實(shí)踐能力和思維創(chuàng)新意識. 教學(xué)重點(diǎn) 1.理解向心力是一種效果力. 2.在具體問題中能找到向心力,并結(jié)合牛頓運(yùn)動(dòng)定律求解有關(guān)問題. 教學(xué)難點(diǎn) 1.具體問題中向心力的來源. 2.關(guān)于對臨界問題的討論和分析. 3.對變速圓周運(yùn)動(dòng)的理解和處理. 課時(shí)安排 1課時(shí) 三維目標(biāo) 知識與技能 1.知道如果一個(gè)力或幾個(gè)力的合力的效果是使物體產(chǎn)生向心加速度,它就是圓周運(yùn)動(dòng)的物體所受的向心力,會(huì)在具體問題中分析向心力的來源. 2.能理解運(yùn)用勻速圓周運(yùn)動(dòng)的規(guī)律分析和處理生產(chǎn)和生活中的具體實(shí)例. 3.知道向心力和向心加速度的公式也適用于變速圓周運(yùn)動(dòng),會(huì)求變速圓周運(yùn)動(dòng)中物體在特殊點(diǎn)的向心力和向心加速度. 過程與方法 1.通過對勻速圓周運(yùn)動(dòng)的實(shí)例分析,滲透理論聯(lián)系實(shí)際的觀點(diǎn),提高學(xué)生的分析和解決問題的能力. 2.通過勻速圓周運(yùn)動(dòng)的規(guī)律也可以在變速圓周運(yùn)動(dòng)中使用,滲透特殊性和一般性之間的辯證關(guān)系,提高學(xué)生的分析能力. 3.通過對離心現(xiàn)象的實(shí)例分析,提高學(xué)生綜合應(yīng)用知識解決問題的能力. 情感態(tài)度與價(jià)值觀 培養(yǎng)學(xué)生的應(yīng)用實(shí)踐能力和思維創(chuàng)新意識;運(yùn)用生活中的幾個(gè)事例,激發(fā)學(xué)生的學(xué)習(xí)興趣、求知欲和探索動(dòng)機(jī);通過對實(shí)例的分析,建立具體問題具體分析的科學(xué)觀念. 教學(xué)過程 導(dǎo)入新課 情景導(dǎo)入 賽車在經(jīng)過彎道時(shí)都會(huì)減速,如果不減速賽車就會(huì)出現(xiàn)側(cè)滑,從而引發(fā)事故.大家思考一下我們?nèi)绾尾拍苁官愜囋趶澋郎喜粶p速通過? 課件展示自行車賽中自行車在通過彎道時(shí)的情景. 根據(jù)展示可以看出自行車在通過彎道時(shí)都是向內(nèi)側(cè)傾斜,這樣的目的是什么?賽場有什么特點(diǎn)? 學(xué)生討論 結(jié)論:賽車和自行車都在做圓周運(yùn)動(dòng),都需要一個(gè)向心力.而向心力是車輪與地面的摩擦力提供的,由于摩擦力的大小是有限的,當(dāng)賽車與地面的摩擦力不足以提供向心力時(shí)賽車就會(huì)發(fā)生側(cè)滑,發(fā)生事故.因此賽車在經(jīng)過彎道時(shí)要減速行駛.而自行車在經(jīng)過彎道時(shí)自行車手會(huì)將身體向內(nèi)側(cè)傾斜,這樣身體的重力就會(huì)產(chǎn)生一個(gè)向里的分力和地面的摩擦力一起提供自行車所需的向心力,因此自行車手在經(jīng)過彎道時(shí)沒有減速.同樣道理摩托車賽中摩托車在經(jīng)過彎道時(shí)也不減速,而是通過傾斜摩托車來達(dá)到同樣的目的. 下面大家考慮一下,火車在通過彎道時(shí)也不減速,那么我們?nèi)绾蝸肀WC火車的安全呢? 復(fù)習(xí)導(dǎo)入 1.向心加速度的公式:an==rω2=r()2. 2.向心力的公式:Fn=m an= m=m rω2=mr()2. 推進(jìn)新課 一、鐵路的彎道 課件展示觀察鐵軌和火車車輪的形狀. 討論與探究 火車轉(zhuǎn)彎特點(diǎn):火車轉(zhuǎn)彎是一段圓周運(yùn)動(dòng),圓周軌道為彎道所在的水平軌道平面. 受力分析,確定向心力(向心力由鐵軌和車輪輪緣的相互擠壓作用產(chǎn)生的彈力提供). 缺點(diǎn):向心力由鐵軌和車輪輪緣的相互擠壓作用產(chǎn)生的彈力提供,由于火車質(zhì)量大,速度快,由公式F向=mv2/r,向心力很大,對火車和鐵軌損害很大. 問題:如何解決這個(gè)問題呢?(聯(lián)系自行車通過彎道的情況考慮) 事實(shí)上在火車轉(zhuǎn)彎處,外軌要比內(nèi)軌略微高一點(diǎn),形成一個(gè)斜面,火車受的重力和支持力的合力提供向心力,對內(nèi)外軌都無擠壓,這樣就達(dá)到了保護(hù)鐵軌的目的. 強(qiáng)調(diào)說明:向心力是水平的. F向= mv02/r = F合= mgtanθ v0= (1)當(dāng)v= v0,F(xiàn)向=F合 內(nèi)外軌道對火車兩側(cè)車輪輪緣都無壓力. (2)當(dāng)v>v0,F(xiàn)向>F合時(shí) 外軌道對外側(cè)車輪輪緣有壓力. (3)當(dāng)v<v0,F(xiàn)向<F合時(shí) 內(nèi)軌道對內(nèi)側(cè)車輪輪緣有壓力. 要使火車轉(zhuǎn)彎時(shí)損害最小,應(yīng)以規(guī)定速度轉(zhuǎn)彎,此時(shí)內(nèi)外軌道對火車兩側(cè)車輪輪緣都無壓力. 二、拱形橋 課件展示交通工具(自行車、汽車等)過拱形橋. 問題情境: 質(zhì)量為m的汽車在拱形橋上以速度v行駛,若橋面的圓弧半徑為R,試畫出受力分析圖,分析汽車通過橋的最高點(diǎn)時(shí)對橋的壓力.通過分析,你可以得出什么結(jié)論? 畫出汽車的受力圖,推導(dǎo)出汽車對橋面的壓力. 思路:在最高點(diǎn),對汽車進(jìn)行受力分析,確定向心力的來源;由牛頓第二定律列出方程求出汽車受到的支持力;由牛頓第三定律求出橋面受到的壓力FN′=G 可見,汽車對橋的壓力FN′小于汽車的重力G,并且,壓力隨汽車速度的增大而減小. 思維拓展 汽車通過凹形橋最低點(diǎn)時(shí),汽車對橋的壓力比汽車的重力大還是小呢?學(xué)生自主畫圖分析,教師巡回指導(dǎo). 課堂訓(xùn)練 一輛質(zhì)量m=2.0 t的小轎車,駛過半徑R=90 m的一段圓弧形橋面,重力加速度g=10 m/s2.求: (1)若橋面為凹形,汽車以20 m/s的速度通過橋面最低點(diǎn)時(shí),對橋面壓力是多大? (2)若橋面為凸形,汽車以10 m/s的速度通過橋面最高點(diǎn)時(shí),對橋面壓力是多大? (3)汽車以多大速度通過凸形橋面頂點(diǎn)時(shí),對橋面剛好沒有壓力? 解答:(1)汽車通過凹形橋面最低點(diǎn)時(shí),在水平方向受到牽引力F和阻力f.在豎直方向受到橋面向上的支持力N1和向下的重力G=mg,如圖所示.圓弧形軌道的圓心在汽車上方,支持力N1與重力G=mg的合力為N1-mg,這個(gè)合力就是汽車通過橋面最低點(diǎn)時(shí)的向心力,即F向=N1-mg.由向心力公式有:N1-mg= 解得橋面的支持力大小為 N1=+mg=(2 000+2 00010)N=2.89104 N 根據(jù)牛頓第三定律,汽車對橋面最低點(diǎn)的壓力大小是2.98104 N. (2)汽車通過凸形橋面最高點(diǎn)時(shí),在水平方向受到牽引力F和阻力f,在豎直方向受到豎直向下的重力G=mg和橋面向上的支持力N2,如圖所示.圓弧形軌道的圓心在汽車的下方,重力G=mg與支持力N2的合力為mg-N2,這個(gè)合力就是汽車通過橋面頂點(diǎn)時(shí)的向心力,即F向=mg-N2,由向心力公式有mg-N2= 解得橋面的支持力大小為N2=mg=(2 00010-2 000)N=1.78104 N 根據(jù)牛頓第三定律,汽車在橋的頂點(diǎn)時(shí)對橋面壓力的大小為1.78104 N. (3)設(shè)汽車速度為vm時(shí),通過凸形橋面頂點(diǎn)時(shí)對橋面壓力為零.根據(jù)牛頓第三定律,這時(shí)橋面對汽車的支持力也為零,汽車在豎直方向只受到重力G作用,重力G=mg就是汽車駛過橋頂點(diǎn)時(shí)的向心力,即F向=mg,由向心力公式有mg= 解得:vm=m/s=30 m/s 汽車以30 m/s的速度通過橋面頂點(diǎn)時(shí),對橋面剛好沒有壓力. 說一說 汽車不在拱形橋的最高點(diǎn)或最低點(diǎn)時(shí),它的運(yùn)動(dòng)能用上面的方法求解嗎? 汽車受到重力和垂直于支持面的支持力,將重力分解為平行于支持面和垂直于支持面的兩個(gè)分力,這樣,在垂直于支持面的方向上重力的分力和支持力的合力提供向心力. 三、航天器中的失重現(xiàn)象 引導(dǎo)學(xué)生閱讀教材“思考與討論”中提出的問題情境,用學(xué)過的知識加以分析,發(fā)表自己的見解.上面“思考與討論”中描述的情景其實(shí)已經(jīng)實(shí)現(xiàn),不過不是在汽車上,而是在航天飛行中. 假設(shè)宇宙飛船質(zhì)量為M,它在地球表面附近繞地球做勻速圓周運(yùn)動(dòng),其軌道半徑近似等于地球半徑R,航天員質(zhì)量為m,宇宙飛船和航天員受到的地球引力近似等于他們在地面的重力.試求座艙對宇航員的支持力.此時(shí)飛船的速度多大? 通過求解,你可以得出什么結(jié)論? 其實(shí)在任何關(guān)閉了發(fā)動(dòng)機(jī),又不受阻力的飛行器中,都是一個(gè)完全失重的環(huán)境.其中所有的物體都處于完全失重狀態(tài). 四、離心運(yùn)動(dòng) 問題:做圓周運(yùn)動(dòng)的物體一旦失去向心力的作用,它會(huì)怎樣運(yùn)動(dòng)呢?如果物體受的合力不足以提供向心力,它會(huì)怎樣運(yùn)動(dòng)呢? 結(jié)論:如果向心力突然消失,物體由于慣性,會(huì)沿切線方向飛出去.如果物體受的合力不足以提供向心力,物體雖不能沿切線方向飛出去,但會(huì)逐漸遠(yuǎn)離圓心.這兩種運(yùn)動(dòng)都叫做離心運(yùn)動(dòng). 結(jié)合生活實(shí)際,舉出物體做離心運(yùn)動(dòng)的例子.在這些例子中,離心運(yùn)動(dòng)是有益的還是有害的?你能說出這些例子中離心運(yùn)動(dòng)是怎樣發(fā)生的嗎? 參考答案:①洗衣機(jī)脫水 ②棉砂糖 ③制作無縫鋼管 ④魔盤游戲 ⑤汽車轉(zhuǎn)彎 ⑥轉(zhuǎn)動(dòng)的砂輪速度不能過大 汽車轉(zhuǎn)彎時(shí)速度過大,會(huì)因離心運(yùn)動(dòng)造成交通事故 水滴的離心運(yùn)動(dòng) 洗衣機(jī)的脫水筒 總結(jié):1.提供的外力F超過所需的向心力,物體靠近圓心運(yùn)動(dòng). 2.提供的外力F恰好等于所需的向心力,物體做勻速圓周運(yùn)動(dòng). 3.提供的外力F小于所需的向心力,物體遠(yuǎn)離圓心運(yùn)動(dòng). 4.物體原先在做勻速圓周運(yùn)動(dòng),突然間外力消失,物體沿切線方向飛出. 例1 如圖所示,雜技演員在做水流星表演時(shí),用繩系著裝有水的水桶,在豎直平面內(nèi)做圓周運(yùn)動(dòng),大家討論一下滿足什么條件水才能從水桶中流出來.若水的質(zhì)量m=0.5 kg,繩長l=60 cm,求: (1)最高點(diǎn)水不流出的最小速率. (2)水在最高點(diǎn)速率v=3 m/s時(shí),水對桶底的壓力. 解析:(1)在最高點(diǎn)水不流出的條件是重力不大于水做圓周運(yùn)動(dòng)所需要的向心力 即mg≤ 則所求最小速率v0=m/s=2.42 m/s. (2)當(dāng)水在最高點(diǎn)的速率大于v0時(shí),只靠重力提供向心力已不足,此時(shí)水桶底對水有一向下的壓力,設(shè)為FN,由牛頓第二定律有 FN+mg= FN=-mg=2.6 N 由牛頓第三定律知,水對桶底的作用力FN′=FN=2.6 N,方向豎直向上. 答案:(1)2.42 m/s (2)2.6 N,方向豎直向上 提示:抓住臨界狀態(tài),找出臨界條件是解決這類極值問題的關(guān)鍵. 課外思考:若本題中將繩換成輕桿,將桶換成球,上面所求的臨界速率還適用嗎? 課堂訓(xùn)練 1.如圖所示,在水平固定的光滑平板上,有一質(zhì)量為M的質(zhì)點(diǎn)P,與穿過中央小孔H的輕繩一端連著.平板與小孔是光滑的,用手拉著繩子下端,使質(zhì)點(diǎn)做半徑為a、角速度為ω1的勻速圓周運(yùn)動(dòng).若繩子迅速放松至某一長度b而拉緊,質(zhì)點(diǎn)就能在以半徑為b的圓周上做勻速圓周運(yùn)動(dòng).求質(zhì)點(diǎn)由半徑a到b所需的時(shí)間及質(zhì)點(diǎn)在半徑為b的圓周上運(yùn)動(dòng)的角速度. 解析:質(zhì)點(diǎn)在半徑為a的圓周上以角速度ω1做勻速圓周運(yùn)動(dòng),其線速度為va=ω1a.突然松繩后,向心力消失,質(zhì)點(diǎn)沿切線方向飛出以va做勻速直線運(yùn)動(dòng),直到線被拉直,如圖所示.質(zhì)點(diǎn)做勻速直線運(yùn)動(dòng)的位移為s=,則質(zhì)點(diǎn)由半徑a到b所需的時(shí)間為:t=s/va=/(ω1a). 當(dāng)線剛被拉直時(shí),球的速度為va=ω1a,把這一速度分解為垂直于繩的速度vb和沿繩的速度v′.在繩繃緊的過程中v′減為零,質(zhì)點(diǎn)就以vb沿著半徑為b的圓周做勻速圓周運(yùn)動(dòng).根據(jù)相似三角形得,即.則質(zhì)點(diǎn)沿半徑為b的圓周做勻速圓周運(yùn)動(dòng)的角速度為ω2=a2ω1/b2. 2.一根長l=0.625 m的細(xì)繩,一端拴一質(zhì)量m=0.4 kg的小球,使其在豎直平面內(nèi)繞繩的另一端做圓周運(yùn)動(dòng),求: (1)小球通過最高點(diǎn)時(shí)的最小速度; (2)若小球以速度v=3.0 m/s通過圓周最高點(diǎn)時(shí),繩對小球的拉力多大?若此時(shí)繩突然斷了,小球?qū)⑷绾芜\(yùn)動(dòng)? 分析與解答:(1)小球通過圓周最高點(diǎn)時(shí),受到的重力G=mg必須全部作為向心力F向,否則重力G中的多余部分將把小球拉進(jìn)圓內(nèi),而不能實(shí)現(xiàn)沿豎直圓周運(yùn)動(dòng).所以小球通過圓周最高點(diǎn)的條件應(yīng)為F向≥mg,當(dāng)F向=mg時(shí),即小球受到的重力剛好全部作為通過圓周最高點(diǎn)的向心力,繩對小球恰好不施拉力,如圖所示,此時(shí)小球的速度就是通過圓周最高點(diǎn)的最小速度v0,由向心力公式有:mg= 解得:G=mg= v0=m/s=2.5 m/s. (2)小球通過圓周最高點(diǎn)時(shí),若速度v大于最小速度v0,所需的向心力F向?qū)⒋笥谥亓,這時(shí)繩對小球要施拉力F,如圖所示,此時(shí)有F+mg= 解得:F=-mg=(0.4-0.410)N=1.76 N 若在最高點(diǎn)時(shí)繩子突然斷了,則提供的向心力mg小于需要的向心力,小球?qū)⒀厍芯€方向飛出做離心運(yùn)動(dòng)(實(shí)際上是平拋運(yùn)動(dòng)). 課堂小結(jié) 本節(jié)課中需要我們掌握的關(guān)鍵是:一個(gè)要從力的方面認(rèn)真分析,搞清誰來提供物體做圓周運(yùn)動(dòng)所需的向心力,能提供多大的向心力,是否可以變化;另一個(gè)方面從運(yùn)動(dòng)的物理量本身去認(rèn)真分析,看看物體做這樣的圓周運(yùn)動(dòng)究竟需要多大的向心力.如果供需雙方正好相等,則物體將做穩(wěn)定的圓周運(yùn)動(dòng);如果供大于需,則物體將偏離圓軌道,逐漸靠近圓心;如果供小于需,則物體將偏離圓軌道,逐漸遠(yuǎn)離圓心;如果外力突然變?yōu)榱悖瑒t物體將沿切線方向做勻速直線運(yùn)動(dòng). 布置作業(yè) 教材“問題與練習(xí)”第1、2、3、4題. 板書設(shè)計(jì) 8.生活中的圓周運(yùn)動(dòng) 一、鐵路的彎道 1.軌道水平:外軌對車的彈力提供向心力 軌道斜面:內(nèi)外軌無彈力時(shí)重力和支持力的合力提供向心力 二、拱形橋 拱形橋:FN=G-m 凹形橋:FN=G+m 三、航天器的失重現(xiàn)象 四、離心運(yùn)動(dòng) 1.離心現(xiàn)象的分析與討論 2.離心運(yùn)動(dòng)的應(yīng)用與防止 活動(dòng)與探究 課題:到公園里親自坐一下稱為“魔盤”的娛樂設(shè)施,并研究、討論:“魔盤”上的人所需向心力由什么力提供?為什么轉(zhuǎn)速一定時(shí),有的人能隨之一起做圓周運(yùn)動(dòng),而有的人逐漸向邊緣滑去? 觀察并思考: 1.汽車、自行車等在水平面上轉(zhuǎn)彎時(shí),為什么速度不能過大? 2.觀察滑冰運(yùn)動(dòng)員及摩托車運(yùn)動(dòng)員在彎道處的姿勢,并分析其受力情況. 習(xí)題詳解 1.解答:因?yàn)檎9ぷ鲿r(shí)轉(zhuǎn)動(dòng)軸受到的水平作用力可認(rèn)為是零,所以轉(zhuǎn)動(dòng)軸OO′將受到的作用力完全是由小螺絲釘P做圓周運(yùn)動(dòng)時(shí)需要的向心力引起的. 故力F=mω2r=m(2πn)2r=0.01(23.141 000)20.20 N=7.89104 N. 2.解答:這輛車拐彎時(shí)需要的向心力為F==2.0103N=1.6104 N>1.4104 N 所以這輛車會(huì)發(fā)生側(cè)滑. 3.解答:(1)汽車在橋頂時(shí)受力分析如圖所示. 汽車通過拱形橋 則據(jù)牛頓第二定律有G-FN= ① 代入數(shù)據(jù)可得FN=7 600 N,所以由牛頓第三定律有汽車對地面的壓力為7 600 N. (2)當(dāng)FN=0時(shí),汽車恰好對橋沒有壓力,此時(shí)可得汽車的速度為v=22.4 m/s(g取10 m/s2). (3)由①式可知,對同樣的車速,拱橋圓弧的半徑越大,汽車對橋的壓力就越大,所以拱橋的半徑比較大些安全. (4)因?yàn)轵v空時(shí)FN=0,所以其速度v=m/s=7 900 m/s 即需要7 900 m/s的速度才能騰空. 4.解答:對小孩的受力分析如圖所示,則據(jù)牛頓第二定律有 FN-G= 由機(jī)械能守恒定律有mgl(1-cos60)= 兩式聯(lián)立代入數(shù)據(jù)可得FN=450N,故秋千板擺到最低點(diǎn)時(shí),小孩對秋千板的壓力是450N. 設(shè)計(jì)點(diǎn)評 本節(jié)課重點(diǎn)是圓周運(yùn)動(dòng)中向心力和向心加速度的應(yīng)用,關(guān)鍵問題是要找出向心力是由誰來提供.圓周運(yùn)動(dòng)和生活密切相關(guān),學(xué)生容易受到生活中的定勢思維所干擾,對向心力分析不足,所以教學(xué)中列舉了生活中大量的常見現(xiàn)象,并借助生活中的事例進(jìn)行辨析,通過師生分析、論證從而得出了正確的結(jié)論.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 生活中的圓周運(yùn)動(dòng) 2019-2020年高中物理 5.8 生活中的圓周運(yùn)動(dòng)優(yōu)秀教案 新人教版必修2 2019 2020 年高 物理 5.8 生活 中的 圓周運(yùn)動(dòng) 優(yōu)秀 教案 新人 必修
鏈接地址:http://www.szxfmmzy.com/p-2624074.html