2018-2019高中數(shù)學 第一章 空間幾何體章末復習課件 新人教A版必修2.ppt
《2018-2019高中數(shù)學 第一章 空間幾何體章末復習課件 新人教A版必修2.ppt》由會員分享,可在線閱讀,更多相關《2018-2019高中數(shù)學 第一章 空間幾何體章末復習課件 新人教A版必修2.ppt(32頁珍藏版)》請在裝配圖網上搜索。
章末復習,第一章空間幾何體,,學習目標1.整合知識結構,梳理知識網絡,進一步鞏固、深化所學知識.2.能熟練畫出幾何體的直觀圖或三視圖,能熟練地計算空間幾何體的表面積和體積,體會通過展開圖、截面圖化空間為平面的方法.,,,知識梳理,達標檢測,,題型探究,內容索引,知識梳理,1.幾何體的概念、側面積與體積,互相平行,四邊形,互相平行,多邊形,有一個公,共頂點,平行于棱錐,底面,矩形的一邊,一,條直角邊,平行于圓錐底面,底面和截面,半圓的直徑,半,圓面,2.空間幾何體的三視圖與直觀圖(1)三視圖是觀察者從三個不同位置觀察同一個空間幾何體而畫出的圖形;它包括正視圖、側視圖、俯視圖三種.畫圖時要遵循“長對正、高平齊、寬相等”的原則.注意三種視圖的擺放順序,在三視圖中,分界線和可見輪廓線都用實線畫出,不可見輪廓線用虛線畫出.熟記常見幾何體的三視圖.畫組合體的三視圖時可先拆,后畫,再檢驗.,(2)斜二測畫法:主要用于水平放置的平面圖形或立體圖形的畫法.它的主要步驟:①畫軸;②畫平行于x,y,z軸的線段分別為平行于x′,y′,z′軸的線段;③截線段:平行于x,z軸的線段的長度不變,平行于y軸的線段的長度變?yōu)樵瓉淼囊话?三視圖和直觀圖都是空間幾何體的不同表示形式,兩者之間可以互相轉化.(3)轉化思想在本章應用較多,主要體現(xiàn)在以下幾個方面①曲面化平面,如幾何體的側面展開,把曲線(折線)化為線段.②等積變換,如三棱錐轉移頂點等.③復雜化簡單,把不規(guī)則幾何體通過分割,補體化為規(guī)則的幾何體等.,1.菱形的直觀圖仍是菱形.()2.正方體、球、圓錐各自的三視圖中,三視圖均相同.()3.多面體的表面積等于各個面的面積之和.()4.簡單組合體的體積等于組成它的簡單幾何體體積的和或差.(),[思考辨析判斷正誤],,,√,√,題型探究,例1下列說法正確的是_____.(填序號)①棱柱的側棱長都相等;②棱柱的兩個互相平行的面一定是棱柱的底面;③夾在圓柱的兩個平行截面間的幾何體還是一個旋轉體;④棱臺的側面是等腰梯形.,,類型一幾何體的結構特征,解析,答案,解析②不正確,例如六棱柱的相對側面;③不正確,如圖;④不正確,側棱長可能不相等.,①,反思與感悟與空間幾何體結構特征有關問題的解題技巧(1)緊扣結構特征是判斷的關鍵,熟悉空間幾何體的結構特征,依據(jù)條件構建幾何模型,在條件不變的情況下,變換模型中的線面關系或增加線、面等基本元素,然后再依據(jù)題意判定.(2)通過舉反例對結構特征進行辨析,要說明一個說法是錯誤的,只要舉出一個反例即可.,跟蹤訓練1根據(jù)下列對幾何體結構特征的描述,說出幾何體的名稱.(1)由八個面圍成,其中兩個面是互相平行且全等的正六邊形,其他各面都是矩形的是__________;(2)等腰梯形沿著過兩底邊中點的直線旋轉180形成的封閉曲面所圍成的圖形是_____;(3)一個直角梯形繞較長的底邊所在的直線旋轉一周形成的曲面所圍成的幾何體是___________________________.,答案,正六棱柱,圓臺,一個圓錐和一個圓柱的組合體,例2(1)將一個長方體沿相鄰三個面的對角線截去一個棱錐,得到的幾何體的正視圖與俯視圖如圖所示,則該幾何體的側視圖為,,類型二直觀圖與三視圖,解析,解析由正視圖和俯視圖可得該幾何體如圖所示,故選B.,答案,√,(2)某四棱錐的三視圖如圖所示,該四棱錐最長棱的棱長為,解析,解析該四棱錐的直觀圖是如圖所示的四棱錐V-ABCD,其中VB⊥平面ABCD,且底面ABCD是邊長為1的正方形,VB=1,所以四棱錐中最長棱為VD,連接BD,,答案,√,反思與感悟(1)空間幾何體的三視圖遵循“長對正,高平齊,寬相等”的原則,同時還要注意被擋住的輪廓線用虛線表示.(2)斜二測畫法:主要用于水平放置的平面圖形或立體圖形的畫法.它的主要步驟:①畫軸;②畫平行于x,y,z軸的線段分別為平行于x′,y′,z′軸的線段;③截線段,平行于x,z軸的線段的長度不變,平行于y軸的線段的長度變?yōu)樵瓉淼囊话?,跟蹤訓練2(1)如圖,在直角三角形ABC中,∠ACB=90,△ABC繞邊AB所在直線旋轉一周形成的幾何體的正視圖為,解析,答案,解析由題意,該幾何體是兩個同底的圓錐組成的簡單組合體,且上半部分的圓錐比下半部分的圓錐高,所以正視圖應為B.,√,(2)若某幾何體的三視圖如圖所示,則這個幾何體的直觀圖可以是,解析,答案,解析A的正視圖如圖(1);B的正視圖如圖(2),故均不符合題意;C的俯視圖如圖(3),也不符合題意,故選D.,√,例3如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)依次是AB,AC的中點,AD⊥BC,EH⊥BC,F(xiàn)G⊥BC,D,H,G為垂足,若將△ABC繞AD旋轉180,求陰影部分形成的幾何體的表面積與體積.,,類型三空間幾何體的表面積和體積,解答,,,,解所得幾何體是一個圓錐挖去一個圓柱后形成的,∵S錐表=πR2+πRl1=4π+8π=12π,,反思與感悟1.空間幾何體表面積的求法(1)以三視圖為載體的幾何體的表面積問題,關鍵是分析三視圖確定幾何體中各元素之間的位置關系及數(shù)量.(2)多面體的表面積是各個面的面積之和;組合體的表面積注意銜接部分的處理.(3)旋轉體的表面積問題注意其側面展開圖的應用.,2.空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解.(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉換法、分割法、補形法等方法進行求解.(3)若以三視圖的形式給出幾何體,則應先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.,跟蹤訓練3如圖所示,已知三棱柱ABC-A1B1C1的所有棱長均為1,且AA1⊥底面ABC,則三棱錐B1-ABC1的體積為,解析,答案,√,達標檢測,1,2,3,4,1.關于幾何體的結構特征,下列說法不正確的是A.棱錐的側棱長都相等B.三棱臺的上、下底面是相似三角形C.有的棱臺的側棱長都相等D.圓錐的頂點與底面圓周上任意一點的連線都是母線,答案,√,5,解析,解析根據(jù)棱錐的結構特征知,棱錐的側棱長不一定都相等.,2.某空間幾何體的正視圖是三角形,則該幾何體不可能是A.圓柱B.圓錐C.四面體D.三棱錐,答案,√,1,2,3,4,5,3.如圖是某幾何體的三視圖,則該幾何體的體積為,解析,答案,√,1,2,3,4,5,,,解析由三視圖可知該幾何體是個四棱柱.棱柱的底面為等腰梯形,高為10.等腰梯形的上底為2,下底為8,高為4,腰長為5.所以梯形的面積為4=20,梯形的周長為2+8+25=20.所以四棱柱的表面積為202+2010=240.,4.某幾何體的三視圖如圖所示,則該幾何體的表面積為A.180B.200C.220D.240,解析,1,2,3,4,5,,,,答案,√,5.如圖,在三棱柱A1B1C1-ABC中,已知D,E,F(xiàn)分別為AB,AC,AA1的中點,設三棱錐A-FED的體積為V1,三棱柱A1B1C1-ABC的體積為V2,則V1∶V2的值為_____.,解析設三棱柱的高為h,∵F是AA1的中點,,∵D,E分別是AB,AC的中點,,1,2,3,4,5,解析,答案,規(guī)律與方法,1.研究空間幾何體,需在平面上畫出幾何體的直觀圖或三視圖,由幾何體的直觀圖可畫它的三視圖,由三視圖可得到其直觀圖,同時可以通過作截面把空間幾何問題轉化成平面幾何問題來解決.2.圓柱、圓錐、圓臺的表面積公式,我們都是通過展開圖化空間為平面的方法得到的,求球的切接問題通常是通過截面把空間問題轉化為平面問題解決.,- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2018-2019高中數(shù)學 第一章 空間幾何體章末復習課件 新人教A版必修2 2018 2019 高中數(shù)學 空間 幾何體 復習 課件 新人 必修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.szxfmmzy.com/p-3161949.html