2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 5.5數(shù)列的綜合應(yīng)用課時(shí)作業(yè) 文(含解析)新人教版.doc
《2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 5.5數(shù)列的綜合應(yīng)用課時(shí)作業(yè) 文(含解析)新人教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 5.5數(shù)列的綜合應(yīng)用課時(shí)作業(yè) 文(含解析)新人教版.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 5.5數(shù)列的綜合應(yīng)用課時(shí)作業(yè) 文(含解析)新人教版 1.(xx北京卷)已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn-an}為等比數(shù)列. (1)求數(shù)列{an}和{bn}的通項(xiàng)公式; (2)求數(shù)列{bn}的前n項(xiàng)和. 解析:(1)設(shè)等差數(shù)列{an}的公差為d,由題意得d===3. 所以an=a1+(n-1)d=3n(n=1,2,…). 設(shè)等比數(shù)列{bn-an}的公比為q,由題意得 q3===8,解得q=2. 所以bn-an=(b1-a1)qn-1=2n-1. 從而bn=3n+2n-1(n=1,2,…). (2)由(1)知bn=3n+2n-1(n=1,2,…). 數(shù)列{3n}的前n項(xiàng)和為n(n+1),數(shù)列{2n-1}的前n項(xiàng)和為1=2n-1. 所以,數(shù)列{bn}的前n項(xiàng)和為n(n+1)+2n-1. 2.(xx山東卷)在等差數(shù)列{an}中,已知公差d=2,a2是a1與a4的等比中項(xiàng). (1)求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)bn=a,記Tn=-b1+b2-b3+b4-…+(-1)nbn,求Tn. 解析:(1)由題意知(a1+d)2=a1(a1+3d), 即(a1+2)2=a1(a1+6),解得a1=2. 所以數(shù)列{an}的通項(xiàng)公式為an=2n. (2)由題意知bn=a=n(n+1). 所以Tn=-12+23-34+…+(-1)nn(n+1). 因?yàn)閎n+1-bn=2(n+1), 可得當(dāng)n為偶數(shù)時(shí), Tn=(-b1+b2)+(-b3+b4)+…+(-bn-1+bn) =4+8+12+…+2n ==, 當(dāng)n為奇數(shù)時(shí), Tn=Tn-1+(-bn)=-n(n+1) =-. 所以Tn= 3.(xx湖北卷)已知等差數(shù)列{an}滿足:a1=2,且a1,a2,a5成等比數(shù)列. (1)求數(shù)列{an}的通項(xiàng)公式; (2)記Sn為數(shù)列{an}的前n項(xiàng)和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說(shuō)明理由. 解析:(1)設(shè)數(shù)列{an}的公差為d,依題意,2,2+d,2+4d成等比數(shù)列,故有(2+d)2=2(2+4d),化簡(jiǎn)得d2-4d=0,解得d=0或d=4. 當(dāng)d=0時(shí),an=2;當(dāng)d=4時(shí),an=2+(n-1)4=4n-2,從而得數(shù)列{an}的通項(xiàng)公式為an=2或an=4n-2. (2)當(dāng)an=2時(shí),Sn=2n.顯然2n<60n+800, 此時(shí)不存在正整數(shù)n,使得Sn>60n+800成立. 當(dāng)an=4n-2時(shí),Sn==2n2. 令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此時(shí)存在正整數(shù)n,使得Sn>60n+800成立,n的最小值為41. 綜上,當(dāng)an=2時(shí),不存在滿足題意的n;當(dāng)an=4n-2時(shí),存在滿足題意的n,其最小值為41. 4.(xx青島模擬)已知函數(shù)f(x)=,若數(shù)列{an}(n∈N*)滿足:a1=1,an+1=f(an). (1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式. (2)設(shè)數(shù)列{cn}滿足:cn=,求數(shù)列{cn}的前n項(xiàng)的和Sn. 解析:(1)因?yàn)閒(x)=, 所以an+1=f(an)==, 所以-=1,{}是等差數(shù)列,an=. (2)cn===n2n, 所以Sn=12+222+…+n2n, 2Sn=122+223+…+(n-1)2n+n2n+1, 所以2Sn-Sn=Sn=-2-22-23…-2n+n2n+1 =-+n2n+1, 所以Sn=(n-1)2n+1+2.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 5.5數(shù)列的綜合應(yīng)用課時(shí)作業(yè) 文含解析新人教版 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 5.5 數(shù)列 綜合 應(yīng)用 課時(shí) 作業(yè) 解析 新人
鏈接地址:http://www.szxfmmzy.com/p-3189347.html