2019年春八年級(jí)數(shù)學(xué)下冊(cè) 第十八章 平行四邊形 18.2 特殊的平行四邊形 18.2.2 菱形 第1課時(shí) 菱形的性質(zhì)練習(xí) 新人教版.doc
《2019年春八年級(jí)數(shù)學(xué)下冊(cè) 第十八章 平行四邊形 18.2 特殊的平行四邊形 18.2.2 菱形 第1課時(shí) 菱形的性質(zhì)練習(xí) 新人教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年春八年級(jí)數(shù)學(xué)下冊(cè) 第十八章 平行四邊形 18.2 特殊的平行四邊形 18.2.2 菱形 第1課時(shí) 菱形的性質(zhì)練習(xí) 新人教版.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
18.2.2 菱 形 第1課時(shí) 菱形的性質(zhì) 1.(xx岱岳期中)如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點(diǎn)O,連接BO.若∠DAC=31,則∠OBC的度數(shù)為( C ) (A)31 (B)49 (C)59 (D)69 2.(xx義烏模擬)如圖,四邊形ABCD是菱形,過(guò)點(diǎn)A作BD的平行線交CD的延長(zhǎng)線于點(diǎn)E,則下列式子不成立的是( A ) (A)BD=CE (B)DA=DE (C)∠EAC=90 (D)∠ABC=2∠E 3.(xx瀘州模擬)如圖,已知菱形ABCD對(duì)角線AC,BD的長(zhǎng)分別為 6 cm,8 cm,AE⊥BC于點(diǎn)E,則AE的長(zhǎng)是( C ) (A)53 (B)25 (C)245 (D)485 4.(xx山西模擬)如圖所示,在菱形ABCD中,∠A=60,AB=2,E,F兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),以相同的速度分別向終點(diǎn)B,C移動(dòng),連接EF,在移動(dòng)的過(guò)程中,EF的最小值為( D ) (A)1 (B)2 (C)32 (D)3 5.已知一個(gè)菱形的周長(zhǎng)為24 cm,有一個(gè)內(nèi)角為60,則這個(gè)菱形較短的一條對(duì)角線長(zhǎng)為 6 cm . 6.如圖,把一個(gè)長(zhǎng)方形的紙片對(duì)折兩次,然后剪下一個(gè)角,為了得到一個(gè)銳角為60的菱形,剪口與折痕所成的角α的度數(shù)應(yīng)為 30或60 . 第6題圖 7.(xx吉林模擬)如圖,四邊形ABCD是菱形,點(diǎn)A,B,C,D的坐標(biāo)分別是(m,0),(0,n),(1,0),(0,2),則mn= 2 . 第7題圖 8.(xx蘇州期中)如圖,點(diǎn)O是菱形ABCD對(duì)角線的交點(diǎn),CE∥BD,EB∥AC,連接OE. (1)求證:OE=CB; (2)如果OC∶OB=1∶2,CD=5,求菱形的面積. (1)證明:因?yàn)镃E∥BD,EB∥AC, 所以四邊形OCEB是平行四邊形, 因?yàn)樗倪呅蜛BCD是菱形, 所以AC⊥BD. 即四邊形OCEB是矩形, 所以O(shè)E=CB. (2)解:因?yàn)樗倪呅蜛BCD是菱形,所以BC=CD=5,AC⊥BD,OC=OA,OB=OD, 在Rt△BOC中,OC∶OB=1∶2,由勾股定理得BC2=OC2+OB2, 設(shè)OC=x,則OB=2x, 即x2+(2x)2=(5)2,解得x=1, 所以O(shè)C=1,OB=2, 所以AC=2OC=21=2,BD=2OB=22=4, 所以菱形ABCD的面積為12BDAC=1242=4. 9.如圖,四邊形ABCD是菱形,CE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,CF⊥AD交AD的延長(zhǎng)線于點(diǎn)F,求證:DF=BE. 證明:因?yàn)樗倪呅蜛BCD是菱形, 所以∠ADC=∠ABC,CD=CB, 所以∠CDF=∠CBE, 因?yàn)镃E⊥AB,CF⊥AD, 所以∠CFD=∠CEB=90. 在△CDF與△CBE中,∠CFD=∠CEB,∠CDF=∠CBE,CD=CB, 所以△CDF≌△CBE(AAS), 所以DF=BE. 10.如圖,在菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)D作對(duì)角線BD的垂線交BA的延長(zhǎng)線于點(diǎn)E. (1)證明:四邊形ACDE是平行四邊形; (2)若AC=8,BD=6,求△ADE的周長(zhǎng). (1)證明:因?yàn)樗倪呅蜛BCD是菱形, 所以AB∥CD,AC⊥BD, 所以AE∥CD,∠AOB=90, 因?yàn)镈E⊥BD,所以∠EDB=90, 所以∠AOB=∠EDB, 所以DE∥AC, 所以四邊形ACDE是平行四邊形. (2)解:因?yàn)樗倪呅蜛BCD是菱形,AC=8,BD=6, 所以AO=12AC=128=4, DO=12BD=126=3,AD=CD, 在Rt△AOD中, 根據(jù)勾股定理, AD=OA2+OD2=42+32=5, 因?yàn)樗倪呅蜛CDE是平行四邊形, 所以AE=CD=AD=5,DE=AC=8, 所以△ADE的周長(zhǎng)為AD+AE+DE=5+5+8=18. 11.(拓展探究題)在?ABCD中,E為BC邊的中點(diǎn),連接DE并延長(zhǎng),交AB邊的延長(zhǎng)線于點(diǎn)F. (1)如圖1,求證:BF=AB; (2)如圖2,G是AB邊的中點(diǎn),連接DG并延長(zhǎng),交CB邊的延長(zhǎng)線于點(diǎn)H,若四邊形ABCD為菱形,試判斷∠H與∠F的大小關(guān)系,并證明你的 結(jié)論. (1)證明:因?yàn)樗倪呅蜛BCD是平行四邊形, 所以DC=AB,DC∥AB, 所以∠C=∠EBF,∠CDE=∠F. 因?yàn)镋是CB的中點(diǎn),所以CE=BE. 在△CDE和△BFE中 ∠CDE=∠F,∠C=∠EBF,EC=BE, 所以△CDE≌△BFE,所以BF=DC, 所以BF=AB. (2)解:∠F=∠H.證明如下: 因?yàn)樗倪呅蜛BCD是菱形, 所以AD=DC=CB=AB,∠A=∠C,AD∥CB,DC∥AB, 所以∠ADG=∠H,∠CDE=∠F. 因?yàn)镋,G分別是CB,AB的中點(diǎn),所以AG=CE. 在△ADG和△CDE中 AG=CE,∠A=∠C,AD=CD, 所以△ADG≌△CDE,所以∠CDE=∠ADG, 所以∠H=∠F.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年春八年級(jí)數(shù)學(xué)下冊(cè) 第十八章 平行四邊形 18.2 特殊的平行四邊形 18.2.2 菱形 第1課時(shí) 菱形的性質(zhì)練習(xí) 新人教版 2019 年春八 年級(jí) 數(shù)學(xué) 下冊(cè) 第十八 特殊 課時(shí) 性質(zhì) 練習(xí)
鏈接地址:http://www.szxfmmzy.com/p-3362849.html