裝配圖邊旭
裝配圖邊旭,裝配,圖邊旭
本科生畢業(yè)設計(論文)
開題報告
學生姓名:邊旭
學 號:14020931
班 級:140209班
專 業(yè):機械工程及自動化
指導教師:李風
開 題 報 告
1 課題介紹
1.1課題名稱:
單線畫線機
1.2課題背景
畫線機是用滾輪等再日用陶瓷、玻璃制品的圓形或橢圓形器皿上,畫一條或多條彩色、彩帶的機械??梢苑譃閱紊珯C畫線機和多色畫線機。本次設計主要是研究設計單色畫線機,即單線畫線機。
陶瓷是無機材料之母,從家庭至宇宙對陶瓷的渴求量愈來愈大,其許多優(yōu)越、潛在特性不斷被發(fā)現(xiàn),近20年來各國非常重視陶瓷的研究、開發(fā)與應用,各國將先后進入陶瓷世界。
陶瓷一般指陶器和瓷器的合稱,“陶”為燒成之意,“瓷”是指硬而之謎的器物。陶瓷是我國歷史悠久的古老文化之一,也是文明的象征。我國陶瓷的出現(xiàn)可上溯到距今一萬年左右,距今3000年前的殷周時代,有了以高嶺土為原料的白陶,已懂得用釉的方法。原始瓷器是以鐵為著色劑的青釉器,是青瓷的前身。晉朝出現(xiàn)“瓷”字,說明當時人們已認識到陶和瓷的區(qū)別。
陶瓷是一種與我們?nèi)粘I钜约霸诟鞣N工程項目能夠經(jīng)常接觸到的材料。隨著技術經(jīng)濟的發(fā)展,在某些科學領域陶瓷已形成其他材料無法比擬的優(yōu)點。例如,工程陶瓷,由工程陶瓷的制成的零件具有耐磨、耐熱、耐摩擦、熱膨脹系數(shù)小等一系列優(yōu)點,是當今世界高技術含量的產(chǎn)品。在國外已越來越多地應用工程陶瓷取代金屬零件,使產(chǎn)品地壽命、穩(wěn)定性等大大提高。在如,低溫燒結(jié)陶瓷(LTCC)大家一定還都記得在手機行業(yè)剛剛起步時的代表作——大哥大,它又笨又重,攜帶不方便,而現(xiàn)在的手機就越來越袖珍了,這里的關鍵就是LTCC技術的發(fā)展。;LTCC技術是把很多東西整合在一起,其全稱為“低溫共燒陶瓷”技術,,簡單地說,就是一種整合、小型化地技術將各種被動組件整合在一起,縮小到陶瓷式電路板上,如果沒有它,手機是無法達到輕薄短小地效果地??傊?,陶瓷已經(jīng)成為與我們密不可分地伙伴了。
我國陶瓷生產(chǎn)歷史悠久,日用陶瓷一直暢銷國內(nèi)外。在我們的生活中,能夠給人們留下直觀印象的是日用陶瓷。這里不乏一些工藝美術品。因此,對于陶瓷制品,我們不僅要求其本身質(zhì)量要好、使用方便,同時還要對其表面進行一定程度的美化處理,繪制出各種線條精美的圖案,增加美感及藝術感。然而,傳統(tǒng)的陶瓷畫線主要是由手工完成的,畫出的線條寬窄不一,嚴重影響產(chǎn)品的質(zhì)量,與其是在畫寬度3mm以上的線條時,用手工的方法根本無法實現(xiàn),因此生產(chǎn)陶瓷的廠家不得不將線條印成畫紙,將畫紙貼在陶瓷制品上進行彩烤,而這又大大提高了成本。陶瓷生產(chǎn)廠家一直都無法解決這一問題。隨著機械化、自動化技術的不斷發(fā)展,研制新型高效的畫線機以代替手工作業(yè)已成為迫切需要。目前,世界各國對裝飾機械的研制十分迅速,不斷推陳出新。其中以畫線機和印花機發(fā)展最為迅速。我國在這方面發(fā)展比較晚,目前用于生產(chǎn)陶瓷機械數(shù)量較小,品種較單一,因此有必要投入人力物力財力設計新產(chǎn)品,引進設備,消化技術。
1.3 工作內(nèi)容和要求
1.3.1 畫線機總體參數(shù)的確定
主要技術指標及重要技術參數(shù)
①主要技術指標
畫線色種: 單色
公稱生產(chǎn)能力:6-12件/分
彩色寬度: 0.25-6mm
制品最大直徑:406mm
制品最大高度:230mm
總功率消耗: 3kw
整機重要: 約100kg
外型尺寸: 約1.4m×0.8m×1.6m
②重要技術參數(shù)
電動機的變速范圍:1000-3000rpm
最短畫線時間: =1.22s
最長畫線時間: =4.14s
畫線輔助時間: t=3s
1.3.2 單線畫線機的機構(gòu)設計
單線自動畫線機主要由主機架、工作臺、施彩器組件、真空泵、氣動系統(tǒng)、電器部分組成.其主要功能包括:驅(qū)動功能、畫線功能、自動裝卸功能、輔助功能、測控功能、安全保護功能。功能分解如下圖:
單
線
畫
線
機
驅(qū)動
施彩頭電機驅(qū)動
吸盤主電機驅(qū)動
單線畫線機
前伸
后仰
吸 盤
吸氣
放氣
輔 助
支撐
導向
測控—單線畫線機畫線
安全保護
漏電保護
過載保護
圖1 單線畫線機的功能結(jié)構(gòu)圖
依據(jù)這些功能,系統(tǒng)組成為:動力系統(tǒng)、傳動系統(tǒng)、執(zhí)行系統(tǒng)、輔助系統(tǒng)、測控系統(tǒng)、安全保護系統(tǒng)。各主要系統(tǒng)概述如下:
動力系統(tǒng):為操作部件提供動力,如機械手的仰俯、旋轉(zhuǎn)、單線機的移動畫線。本設計中動力裝置為電動機和氣壓系統(tǒng)。
傳動系統(tǒng):是將動力機的運動和動力傳遞給執(zhí)行機構(gòu)或執(zhí)行構(gòu)件的中間裝置。主要有帶傳動、齒輪傳動、蝸輪蝸桿傳動等。在本設計中,由電動機到施釉輪之間的傳動是通過帶傳動來完成的。
執(zhí)行機構(gòu):能直接完成預期工作任務的機構(gòu)和部件,為完成對陶瓷制品的畫線功能所需的執(zhí)行機構(gòu)的部件主要是機械手、施釉輪及帶釉輪。
測控系統(tǒng):是控制畫線機各執(zhí)行機構(gòu)按規(guī)定程序和要求,以一定順序和規(guī)律運動完成畫線機,具體測控有機械手旋轉(zhuǎn)角度、升降角度、單線機的位移量、放氣時間等。
輔助系統(tǒng):為完成畫線功能,以上各功能還需要一些輔助系統(tǒng)支持,如支承、下料、送料等輔助系統(tǒng)。
為了保證準確可靠地實現(xiàn)畫線機地畫線功能,實現(xiàn)畫線自動化,需滿足以下條件:
① 機構(gòu)地布局應合理,相互之間保證不干涉,不阻擋。
② 總體布局應使工人操作安全方便,節(jié)省空間。
③ 吸盤吸、放氣時要考慮工人操作時間地合理性。
④ 機器的電動、氣動部分都需外殼罩住,已加工與未加工的工件放置要整齊,物料陪送線路要清晰、合理。
⑤ 本機分四部分安裝,各部分安裝好后再連接在一起構(gòu)成一個整體,這樣能夠提高效率,保證質(zhì)量且運輸時也方便。
1.3.3 相關部件、零件設計
單線畫線機主要有施彩器傳動系統(tǒng)、氣動系統(tǒng)、真空系統(tǒng)、電器系統(tǒng)四部分.其中零件要首先選擇標準件,若標準件中沒有合適的零件可自行進行設計.在本機的設計中,我們需要設計選擇電機、傳動系統(tǒng)、減速器、阻尼裝置等.
表1 形態(tài)學矩陣
分功能
解 法
1
2
3
4
5
6
A動力源
B位移傳動
C位移
D取物傳動
E取物
電動機
齒輪傳動
軌道及車
輪
拉桿
挖斗
汽油機
蝸輪蝸桿
傳動
輪胎
繩傳動
抓斗
柴油機
帶傳動
履帶
汽缸傳動
鉗式斗
蒸氣透平
鏈傳動
氣墊
液壓缸傳
動
機械手
液動機
液力耦合器
氣動馬達
1.3.3.1 電動機的選擇
電動機施機械系統(tǒng)中最常用的動力機,與其他動力機相比,它具有較高的驅(qū)動效率,且其種類和型號較多,與工作機械連接方便,具有良好的調(diào)速、啟動、制動和反向控制性能.易于實現(xiàn)遠距離、自動控制,工作時無環(huán)境污染,可滿足大多數(shù)機械的工作要求.
1.3.3.2 氣動系統(tǒng)的選擇
特點:
① 元件結(jié)構(gòu)簡單、緊湊、易于制造,且不污染環(huán)境.可集中供氣和遠距離輸送,便于管理.
② 易于實現(xiàn)快速的直線往復運動,擺動的高速轉(zhuǎn)動.輸出力和運動速度調(diào)節(jié)很方便,且能實現(xiàn)過載自動保護.
③ 工作環(huán)境適應性較強.
④ 由于壓縮空氣的工作壓力不高,一般在0.4-0.6MPa,故輸出力和力矩不高,且傳動效率也較低,一般用于輸出力不大的傳動裝置.采用擴力機械或氣液增壓裝置,可提高輸出力.
⑤ 由于空氣有壓縮性,故運動速度的穩(wěn)定性較差,較難實現(xiàn)精密控制.采用氣液聯(lián)動方式,可提高運動速度的穩(wěn)定性.
⑥ 由于氣信號的傳遞速度比電信號慢得多,故不宜用于遙控及復雜得控制系統(tǒng).
組成:
起源部分、執(zhí)行部分、控制部分、輔助部分.
1.3.3.3減速器的選用
本機可選擇常用的阿基米德圓柱蝸桿減速器,這種減速器適用于蝸桿轉(zhuǎn)速不超過1500r/min,環(huán)境溫度為-40-+40°C的場合,可以正反兩向運轉(zhuǎn).在選用減速器時,首先根據(jù)工作要求確定傳動比i,再按蝸輪軸的計算轉(zhuǎn)矩查蝸輪軸額定轉(zhuǎn)矩表,確定減速器的中心距.然后按機器布置,潤滑等要求選擇減速器的裝配形式.必要時要進行散熱計算.
1.4 課題的重點和難點
1.4.1 單線畫線機設計重點
單線自動畫線機的用途是在陶瓷制品上畫出裝飾線條或圖案,以達到美化陶瓷質(zhì)樸那的目的。這種機械代替了手工畫線工作,提高了勞動生產(chǎn)率以及精度,可以畫出粗細均勻的線條,克服了手工作業(yè)的缺點與不足,滿足了廣大消費者的審美要求并提高了勞動生產(chǎn)率。我國地域遼闊,該機不受地形氣候等外界因素影響和限制,并且易于維修,工作可靠,適用于相關陶瓷生產(chǎn)部門。
經(jīng)各種常用系統(tǒng)的計算比較得出,當施釉輪與被加工陶瓷盤間實現(xiàn)純滾動,且滾動畫線速度在0.4m/s時,畫線效果最佳,故單線畫線機的一切設計要以此為宗旨。
通過帶傳動的裝置,電動機將動力傳遞給了施釉輪與帶釉輪,兩輪開始旋轉(zhuǎn),此時主從摩擦輪接觸,帶動陶瓷旋轉(zhuǎn),設計合理的技術參數(shù),可實現(xiàn)上述的畫線速度要求,畫線機開始畫線。在每個陶瓷畫線的開始與結(jié)束,為了便與裝卸陶瓷,支承施釉頭組件的桿件必須能夠?qū)崿F(xiàn)擺動,以使施釉頭組件準確靠近、離開瓷器。經(jīng)多方面的比較,我們最終選擇氣動系統(tǒng)實現(xiàn)這一環(huán)節(jié)。另外,在被加工定位的這一環(huán)節(jié)也有講究。由于陶瓷制品易碎這一特點,使得我們必須摒棄普通機床夾具而選擇其它的定位夾緊方法?;诒P狀陶瓷表面光潔的特點,我們想到了可以利用真空吸附夾緊方式定位,及手部為真空吸盤。
1.4.2單線畫線機的設計難點
對于單線自動畫線機,最重要的是能夠畫出均勻清晰的線條,以滿足廣大消費者的審美要求,因此對各機構(gòu)的運動精度和定位精度要求較高。畫線機的運動精度和定位精度主要包括以下幾個方面:
①施彩頭組件擺動的運動與機械手的運動需協(xié)調(diào)一致,即與裝、卸料工作要配合。
②為了保證施釉輪與制品之間的接觸精度,單線機的前進與后退要有較高的定位精度。
③機械手的旋轉(zhuǎn)角度是否精確,關系到安放工件時的中心線能否與吸盤中心重合。
由于這些精度將直接關系到產(chǎn)品質(zhì)量,建議采取開環(huán)伺服系統(tǒng)進行控制。
1.5 單線畫線機的機械系統(tǒng)的方案設計
機械系統(tǒng)的方案設計,是機械設計中極其重要的一環(huán)。正確、合理的機械系統(tǒng)的方案,對于提高機械的性能、質(zhì)量、市場競爭力和經(jīng)濟效益等都是至關重要的。
單線畫線機
制成品M’
瓷器M
指令S
信息顯示S’
能量E
輸出E’
圖2 單線畫線機黑箱圖
1.5.1 執(zhí)行系統(tǒng)的方案設計
包括執(zhí)行系統(tǒng)的功能原理設計,執(zhí)行系統(tǒng)的運動規(guī)律設計,執(zhí)行系統(tǒng)的形式設計,執(zhí)行系統(tǒng)的協(xié)調(diào)設計以及執(zhí)行系統(tǒng)的方案評價。
1.5.2 傳動系統(tǒng)的方案設計
包括選擇合理的傳動裝置的類型、確定傳動路線的方案以及合理分配傳動系統(tǒng)。
1.5.3 原動機類型的選擇
包括原動機的類型、轉(zhuǎn)速、以及原動機容量的選擇。
1.5.4 操縱控制系統(tǒng)的選擇
包括機電控制系統(tǒng)、機液控制系統(tǒng)、電業(yè)控制系統(tǒng)、液壓控制系統(tǒng)、氣動系統(tǒng)、電氣控制系統(tǒng)以及微機控制系統(tǒng)。
1.6 國內(nèi)外同類產(chǎn)品的對比
國外很多國家重視裝飾機械的研制與開發(fā),特別時在畫線機、印花機方面的發(fā)展時十分迅速的,與國外產(chǎn)品比起來,該產(chǎn)品的生產(chǎn)效率低且柔性化程度不高;但在國內(nèi),由于這一方面起步較晚,發(fā)展較慢,所以該產(chǎn)品已經(jīng)達到了一個新的水平。
1.7關于用戶的需求和企業(yè)發(fā)展計劃的介紹
對于用戶來說,他們希望用更好的陶瓷制品,外表美觀大方,且物美價廉,這就是用戶所追求的方向。因此,企業(yè)的發(fā)展應以此為導向,來滿足用戶的需求。這樣的企業(yè)才能有所創(chuàng)造,有所發(fā)展。
1.8 可能用到的知識和技能
理論知識:機械原理、機械設計、材料力學、機械制造技術等
應用軟件:AutoCAD、CATIA、ADAMS、Office word等。
1.9 需要自學的知識和技能
由于在本科的學習階段,我們主要學習了一些專業(yè)理論知識而過少解除各科知識在實際當中的應用。因此,在設計過程中,我們應注重在實際應用方面豐富自己的頭腦。針對這次的畢業(yè)設計,我應多多學習關于陶瓷加工機械方面的知識,爭取創(chuàng)造條件實際觀察陶瓷的單線畫線機的工作過程,了解其原理。另外,在三維造型方面,目前市面流行的工程軟件很多,除了CATIA,我們還可以考慮用其他的軟件。若有條件,我會考慮學習另外的軟件來進行三維造型。
2 工作計劃
表2 進度計劃表
2006.2-2006.3
調(diào)研、譯文、參考文獻
2006.4.1-2006.4.15
總體布置、草圖、開題報告
2006.4.15-2006.5.1
總體設計、總裝圖
2006.5.1-2006.5.15
部件設計、相關計算
2006.5.15-2006.6.1
零件、部件、設計、論文
2006.6.1-2006.6.20
修改、完善、圖紙論文、答辯
參考文獻
[1]瓷器、精瓷與彩瓷 劉達權(quán) 北京:輕工業(yè)出版社,1984
[2]新型陶瓷 邱關明 北京:兵器工業(yè)出版社,1993.3
[3]設計材料與加工工藝 張錫 北京:化學工業(yè)出版社,2004.8
[4]陶瓷造型基礎 楊永善 北京:輕工業(yè)出版社,1985
[5]日用陶瓷工業(yè)學 李家駒 武漢:武漢工業(yè)大學出版社,1992
[6]高性能陶瓷論文集 郭景坤 北京:人民交通出版社,1998.5
[7]機械系統(tǒng)設計 朱龍根 北京:機械工業(yè)出版社,2001.8
[8]非標準設備機械手冊 張展 北京:兵器工業(yè)出版社
[9]中國機電產(chǎn)品大辭典 北京:機械工業(yè)出版社
[10]現(xiàn)代綜合機械設計手冊(下) 北京出版社
[11]機械設計 譚慶昌,趙洪志 吉林科學技術出版社
[12]材料力學 聶毓琴,孟廣偉 吉林科學技術出版社
[13]機械制造技術基礎 于駿一,張福潤 機械工業(yè)出版社
[14]機械原理 秦榮榮,崔可維 吉林科學技術出版社
摘 要
本次設計的任務的是設計一臺陶瓷單色自動畫線機。其主要功能是在一個陶瓷器件上畫出一條粗細均勻的線。這個工作代替了手工畫線,降低工人的勞動強度,提高了勞動生產(chǎn)率。
本文主要討論了設計的必要性。通過系統(tǒng)的功能分解、功能合成、方案設計等方面的分析,提出了新的設計方案,這一點對產(chǎn)品的成敗起決定性作用。本文還包括了進行設計所需的一些必要計算,且安排一些與設計有關的重要數(shù)據(jù)以及設計程序等。另外,本文還包括對一些典型零部件進行了結(jié)構(gòu)工藝性分析,闡明如何操作的說明書、設計總結(jié)等等。
在本次設計中,我認真完成老師安排的任務,并且根據(jù)自己設計的特點做了些ADAMS仿真的工作。由于時間有限且經(jīng)驗尚淺,設計中還有很多的不足,懇請老師批評指正。
Abstract
目錄
前 言
陶瓷是無機材料之母,從家庭至宇宙對陶瓷的渴求量愈來愈大,其許多優(yōu)越、潛在特性不斷被發(fā)現(xiàn),近20年來各國非常重視陶瓷的研究、開發(fā)與應用,各國將先后進入陶瓷世界。
陶瓷一般指陶器和瓷器的合稱,“陶”為燒成之意,“瓷”是指硬而之謎的器物。陶瓷是我國歷史悠久的古老文化之一,也是文明的象征。我國陶瓷的出現(xiàn)可上溯到距今一萬年左右,距今3000年前的殷周時代,有了以高嶺土為原料的白陶,已懂得用釉的方法。原始瓷器是以鐵為著色劑的青釉器,是青瓷的前身。晉朝出現(xiàn)“瓷”字,說明當時人們已認識到陶和瓷的區(qū)別。
畫線機是用滾輪等再日用陶瓷、玻璃制品的圓形或橢圓形器皿上,畫一條或多條彩色、彩帶的機械。這種機器的出現(xiàn),大大減輕了工人手工勞動量,提高了生產(chǎn)率,而且在一定程度上也提高了產(chǎn)品質(zhì)量。可以說,陶瓷畫線機的出現(xiàn)將陶瓷產(chǎn)業(yè)在工業(yè)化進程上又推進了一大步??梢苑譃閱紊珯C畫線機和多色畫線機。本次設計主要是研究設計單色畫線機,即單線畫線機。
在本次設計中,陶瓷器件是通過吸氣式吸盤固定工位的,并于主軸同時旋轉(zhuǎn)。這種吸氣式吸盤實屬工業(yè)機械手的范疇。工業(yè)機械手是工業(yè)生產(chǎn)中一種比較新的技術裝備。它是一種模仿人體上肢的部分功能安裝預定要求輸出工件或者握持工件進行操作的自動化技術裝備。這種新穎工具的出現(xiàn)和應用,對實現(xiàn)工業(yè)生產(chǎn)自動化起重要作用,因而有著強大的生命力,受到人們的廣泛重視和歡迎。工業(yè)機械手可以代替人手的繁重勞動,顯著減輕工人的勞動強度,提高勞動效率和生產(chǎn)的自動化水平。
第一章 總體方案
陶瓷是無機材料之母,從家庭至宇宙對陶瓷的渴求量愈來愈大,其許多優(yōu)越、潛在特性不斷被發(fā)現(xiàn),近20年來各國非常重視陶瓷的研究、開發(fā)與應用,各國將先后進入陶瓷世界。
陶瓷一般指陶器和瓷器的合稱,“陶”為燒成之意,“瓷”是指硬而之謎的器物。陶瓷是我國歷史悠久的古老文化之一,也是文明的象征。我國陶瓷的出現(xiàn)可上溯到距今一萬年左右,距今3000年前的殷周時代,有了以高嶺土為原料的白陶,已懂得用釉的方法。原始瓷器是以鐵為著色劑的青釉器,是青瓷的前身。晉朝出現(xiàn)“瓷”字,說明當時人們已認識到陶和瓷的區(qū)別。
畫線機是用滾輪等再日用陶瓷、玻璃制品的圓形或橢圓形器皿上,畫一條或多條彩色、彩帶的機械。這種機器的出現(xiàn),大大減輕了工人手工勞動量,提高了生產(chǎn)率,而且在一定程度上也提高了產(chǎn)品質(zhì)量??梢哉f,陶瓷畫線機的出現(xiàn)將陶瓷產(chǎn)業(yè)在工業(yè)化進程上又推進了一大步。可以分為單色機畫線機和多色畫線機。本次設計主要是研究設計單色畫線機,即單線畫線機。
在本次設計中,陶瓷器件是通過吸氣式吸盤固定工位的,并于主軸同時旋轉(zhuǎn)。這種吸氣式吸盤實屬工業(yè)機械手的范疇。工業(yè)機械手是工業(yè)生產(chǎn)中一種比較新的技術裝備。它是一種模仿人體上肢的部分功能安裝預定要求輸出工件或者握持工件進行操作的自動化技術裝備。這種新穎工具的出現(xiàn)和應用,對實現(xiàn)工業(yè)生產(chǎn)自動化起重要作用,因而有著強大的生命力,受到人們的廣泛重視和歡迎。工業(yè)機械手可以代替人手的繁重勞動,顯著減輕工人的勞動強度,提高勞動效率和生產(chǎn)的自動化水平。
1.1產(chǎn)品的用途及使用范圍
單線自動畫線機的用途是在陶瓷制品上畫出裝飾線條或圖案,以達到美化陶瓷質(zhì)樸那的目的。這種機械代替了手工畫線工作,提高了勞動生產(chǎn)率以及精度,可以畫出粗細均勻的線條,克服了手工作業(yè)的缺點與不足,滿足了廣大消費者的審美要求并提高了勞動生產(chǎn)率。我國地域遼闊,該機不受地形氣候等外界因素影響和限制,并且易于維修,工作可靠,適用于相關陶瓷生產(chǎn)部門。
1.2單線自動畫線機的功能設置及系統(tǒng)組成
單線自動畫線機主要由主機架、工作臺、施彩器組件、真空泵、氣動系統(tǒng)、電器部分組成.其主要功能包括:驅(qū)動功能、畫線功能、自動裝卸功能、輔助功能、測控功能、安全保護功能。功能分解如圖1:
圖1.1 單線畫線機功能分解圖
依據(jù)這些功能,系統(tǒng)組成為:動力系統(tǒng)、傳動系統(tǒng)、執(zhí)行系統(tǒng)、輔助系統(tǒng)、測控系統(tǒng)、安全保護系統(tǒng)。各主要系統(tǒng)概述如下:
①動力系統(tǒng):為操作部件提供動力,如機械手的仰俯、旋轉(zhuǎn)、單線機的移動畫線。本設計中動力裝置為電動機和氣壓系統(tǒng)。
②傳動系統(tǒng):是將動力機的運動和動力傳遞給執(zhí)行機構(gòu)或執(zhí)行構(gòu)件的中間裝置。主要有帶傳動、齒輪傳動、蝸輪蝸桿傳動等。在本設計中,由電動機到施釉輪之間的傳動是通過帶傳動來完成的。
③執(zhí)行機構(gòu):能直接完成預期工作任務的機構(gòu)和部件,為完成對陶瓷制品的畫線功能所需的執(zhí)行機構(gòu)的部件主要是機械手、施釉輪及帶釉輪。
④測控系統(tǒng):是控制畫線機各執(zhí)行機構(gòu)按規(guī)定程序和要求,以一定順序和規(guī)律運動完成畫線機,具體測控有機械手旋轉(zhuǎn)角度、升降角度、單線機的位移量、放氣時間等。
⑤輔助系統(tǒng):為完成畫線功能,以上各功能還需要一些輔助系統(tǒng)支持,如支承、下料、送料等輔助系統(tǒng)。
1.3主要工作原理
通過帶傳動的裝置,電動機將動力傳遞給了施釉輪與帶釉輪,兩輪開始旋轉(zhuǎn),此時主從摩擦輪接觸,帶動陶瓷旋轉(zhuǎn),設計合理的技術參數(shù),可實現(xiàn)上述的畫線速度要求,施釉輪開始在瓷器上畫線。在每個陶瓷畫線的開始與結(jié)束,為了便于裝卸陶瓷,支承施釉頭組件的桿件必須能夠?qū)崿F(xiàn)擺動,以使施釉頭組件準確靠近、離開瓷器。經(jīng)多方面的比較,我們最終選擇氣動系統(tǒng)實現(xiàn)這一環(huán)節(jié)。另外,在被加工定位的這一環(huán)節(jié)也有講究。由于陶瓷制品易碎這一特點,使得我們必須摒棄普通機床夾具而選擇其它的定位夾緊方法?;诒P狀陶瓷表面光潔的特點,我們想到了可以利用真空吸附夾緊方式定位,及手部為真空吸盤
經(jīng)各種常用系統(tǒng)的計算比較得出,當施釉輪與被加工陶瓷盤間實現(xiàn)純滾動,且滾動畫線速度在0.4m/s時,畫線效果最佳,故單線畫線機的一切設計要以此為宗旨。
1.4總體布局
為了保證準確可靠地實現(xiàn)單線畫線機的畫線功能,在總體布局方面我們要注意以下幾點:
①. 機構(gòu)的布局應合理,相互之間保證不干涉、不阻擋。
②. 總體布局應使工人操作方便、節(jié)省空間。
③. 吸盤吸、放氣時要考慮工人操作時間地合理性。
④. 機器的電動,氣動部分都需外殼罩住,已加工與未加工的工件放置要整齊,物料配送線路要清晰、合理。
⑤. 本機分四部分安裝,各部分安裝好后再連接在一起構(gòu)成一個整體,這樣能夠提高效率,保證質(zhì)量且運輸時也方便。
1.5關鍵技術攻關
對于單線自動畫線機,最重要的是能夠畫出均勻清晰的線條,以滿足廣大消費者的審美要求,因此對各機構(gòu)的運動精度和定位精度要求較高。畫線機的運動 精度和定位精度主要包括以下幾個方面:
①. 施彩頭組件擺動的運動與機械手的運動需協(xié)調(diào)一致,即與裝、卸料工作要配合。
②. 為了保證施釉輪與制品之間的接觸精度,單線機的前進與后退要有較高的定位精度
③. 機械手的旋轉(zhuǎn)角度是否精確,關系到安放工件時的中心線能否與吸盤中心重合。
由于這些精度將直接關系到產(chǎn)品質(zhì)量,建議采取開環(huán)伺服系統(tǒng)進行控制。
1.6設計計算的標準化要求
考慮到標準化和互換性,建議滿足以下要求:
①. 電動機、聯(lián)軸器、各連接件、緊固件等使用標準件和通用件
②. 真空吸盤機械手的設計在具體尺寸及運動形式上應該貫徹國際標準:
GB/T 12643-90 工業(yè)機器人術語和圖形符號
GB/T 12644-90 工業(yè)機器人特性表示
GB/T 12645-90 工業(yè)機器人性能測試方法
GB/T 12649-90 工業(yè)機器人性能規(guī)范
1.7國內(nèi)外同類產(chǎn)品的對比
國外很多國家重視裝飾機械的研制與開發(fā),特別時在畫線機、印花機方面的發(fā)展時十分迅速的,與國外產(chǎn)品比起來,該產(chǎn)品的生產(chǎn)效率低且柔性化程度不高;但在國內(nèi),由于這一方面起步較晚,發(fā)展較慢,所以該產(chǎn)品已經(jīng)達到了一個新的水平。
1.8與外部協(xié)調(diào)所需的約束條件
①. 能源動力條件:采用電動與其壓傳動。
②. 安裝:本機分三個部分安裝,分別為主機部分、電機部分、真空吸盤機械手部分,再連接到一起構(gòu)成整體,這樣可以方便運輸及安裝,且效率高。
③. 色彩條件:由于陶瓷制品是人們使用或珍藏的,建議使用較淡的顏色。
第二章 單線畫線機機械系統(tǒng)的方案設計
機械系統(tǒng)的方案設計,是機械設計中極其重要的一環(huán)。正確、合理的機械系統(tǒng)的方案,對于提高機械的性能、質(zhì)量、市場競爭力和經(jīng)濟效益等都是至關重要的。
單線畫線機
制成品M’
陶瓷器件M
指令S
信息顯示S’
能量E
輸出E’
圖2 單線畫線機黑箱圖
2.1執(zhí)行系統(tǒng)的方案設計
包括執(zhí)行系統(tǒng)的功能原理設計,執(zhí)行系統(tǒng)的運動規(guī)律設計,執(zhí)行系統(tǒng)的形式設計,執(zhí)行系統(tǒng)的協(xié)調(diào)設計以及執(zhí)行系統(tǒng)的方案評價。
2.1.1 執(zhí)行系統(tǒng)的方案設計
包括執(zhí)行系統(tǒng)的功能原理設計,執(zhí)行系統(tǒng)的運動規(guī)律設計,執(zhí)行系統(tǒng)的形式設計,執(zhí)行系統(tǒng)的協(xié)調(diào)設計以及執(zhí)行系統(tǒng)的方案評價。
2.1.2 傳動系統(tǒng)的方案設計
包括選擇合理的傳動裝置的類型、確定傳動路線的方案以及合理分配傳動系統(tǒng)。
2.1.3 原動機類型的選擇
包括原動機的類型、轉(zhuǎn)速、以及原動機容量的選擇。
2.1.4 操縱控制系統(tǒng)的選擇
包括機電控制系統(tǒng)、機液控制系統(tǒng)、電業(yè)控制系統(tǒng)、液壓控制系統(tǒng)、氣動系統(tǒng)、電氣控制系統(tǒng)以及微機控制系統(tǒng)。
2.2由設定功能選擇恰當?shù)牧悴考?
單線畫線機主要有施彩器傳動系統(tǒng)、氣動系統(tǒng)、真空系統(tǒng)、電器系統(tǒng)四部分。其中零件要首先選擇標準件,若標準件中沒有合適的零件可自行進行設計。在本機的設計中,我們需要設計選擇電機、傳動系統(tǒng)、減速器、阻尼裝置等。
表1 形態(tài)學矩陣
分功能
解 法
1
2
3
4
5
6
A動力源
B位移傳動
C位移
D取物傳動
E取物
電動機
齒輪傳動
軌道及車輪
拉桿
挖斗
汽油機
蝸輪蝸桿
傳動
輪胎
繩傳動
抓斗
柴油機
帶傳動
履帶
汽缸傳動
鉗式斗
蒸氣透平
鏈傳動
氣墊
液壓缸傳動
機械手
液動機
液力耦合器
氣動馬達
2.2.1 氣動系統(tǒng)的選擇
2.2.1.1特點:
① 元件結(jié)構(gòu)簡單、緊湊、易于制造,且不污染環(huán)境.可集中供氣和遠距離輸送,便于管理.
② 易于實現(xiàn)快速的直線往復運動,擺動的高速轉(zhuǎn)動.輸出力和運動速度調(diào)節(jié)很方便,且能實現(xiàn)過載自動保護.
③ 工作環(huán)境適應性較強.
④ 由于壓縮空氣的工作壓力不高,一般在0.4-0.6MPa,故輸出力和力矩不高,且傳動效率也較低,一般用于輸出力不大的傳動裝置.采用擴力機械或氣液增壓裝置,可提高輸出力.
⑤ 由于空氣有壓縮性,故運動速度的穩(wěn)定性較差,較難實現(xiàn)精密控制.采用氣液聯(lián)動方式,可提高運動速度的穩(wěn)定性.
⑥ 由于氣信號的傳遞速度比電信號慢得多,故不宜用于遙控及復雜得控制系統(tǒng).
2.2.1.2組成
起源部分、執(zhí)行部分、控制部分、輔助部分.
2.2.2減速器的選擇
本機可選擇常用的阿基米德圓柱蝸桿減速器,這種減速器適用于蝸桿轉(zhuǎn)速不超過1500r/min,環(huán)境溫度為-40-+40°C的場合,可以正反兩向運轉(zhuǎn).在選用減速器時,首先根據(jù)工作要求確定傳動比i,再按蝸輪軸的計算轉(zhuǎn)矩查蝸輪軸額定轉(zhuǎn)矩表,確定減速器的中心距.然后按機器布置,潤滑等要求選擇減速器的裝配形式.必要時要進行散熱計算.
2.2.3 電動機的選擇
電動機施機械系統(tǒng)中最常用的動力機,與其他動力機相比,它具有較高的驅(qū)動效率,且其種類和型號較多,與工作機械連接方便,具有良好的調(diào)速、啟動、制動和反向控制性能.易于實現(xiàn)遠距離、自動控制,工作時無環(huán)境污染,可滿足大多數(shù)機械的工作要求.
400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A. Tel: (724) 776-4841 Fax: (724) 776-5760 Web: www.sae.org SAE TECHNICAL PAPER SERIES 2002-01-1691 Developing Next Generation Axle Fluids: Part I – Test Methodology to Measure Durability and Temperature Reduction Properties of Axle Gear Oils Edward S. Akucewich, James N. Vinci, Farrukh S. Qureshi and Robert W. Cain The Lubrizol Corporation International Spring Fuels & Lubricants Meeting & Exhibition Reno, Nevada May 6-9, 2002 The appearance of this ISSN code at the bottom of this page indicates SAE’s consent that copies of the paper may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay a per article copy fee through the Copyright Clearance Center, Inc. Operations Center, 222 Rosewood Drive, Danvers, MA 01923 for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Quantity reprint rates can be obtained from the Customer Sales and Satisfaction Department. To request permission to reprint a technical paper or permission to use copyrighted SAE publications in other works, contact the SAE Publications Group. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. ISSN 0148-7191 Copyright ? 2002 Society of Automotive Engineers, Inc. Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of the paper. A process is available by which discussions will be printed with the paper if it is published in SAE Transactions. For permission to publish this paper in full or in part, contact the SAE Publications Group. Persons wishing to submit papers to be considered for presentation or publication through SAE should send the manuscript or a 300 word abstract of a proposed manuscript to: Secretary, Engineering Meetings Board, SAE. Printed in USA All SAE papers, standards, and selected books are abstracted and indexed in the Global Mobility Database ABSTRACT Light trucks and sport utility vehicles (SUVs) have become extremely popular in the United States in recent years, but this shift to larger passenger vehicles has placed new demands upon the gear lubricant. The key challenge facing vehicle manufacturers in North America is meeting government-mandated fuel economy requirements while maintaining durability. Gear oils must provide long-term durability and operating temperature control in order to increase equipment life under severe conditions while maintaining fuel efficiency. This paper describes the development of a full-scale light duty axle test that simulates a variety of different driving conditions that can be used to measure temperature reduction properties of gear oil formulations. The work presented here outlines a test methodology that allows gear oil formulations to be compared with each other while accounting for axle changes due to wear and conditioning during testing. Results are shown from a variety of different axle configurations and loading conditions. This test method shows the importance of accounting for changes in the axle when comparing test results whenever severe conditions are experienced. INTRODUCTION Within the last few years, there has been a renewed desire to make fuel economy improvements in North America’s light trucks and sport utility vehicles (SUV’s). Vehicle manufacturers have set aggressive fuel efficiency improvement objectives for these vehicles. Because of this, gear lubricants have been targeted to contribute fuel economy improvements over the current products used in these applications. This is not as easy as it may seem. In addition to acceptable fuel economy, gear lubricants are required to protect axle components under a variety of stressed conditions. These include high speed scuffing, low speed, high torque wear, corrosion and oxidation. In light truck and racing applications, gear oils must provide long-term durability and operating temperature control under extreme conditions, such as trailer towing or extended high speed applications. Higher operating temperatures for prolonged periods can adversely affect metallurgical properties and reduce fluid film thickness, both of which can lead to premature equipment failures. In our view, operating temperature is an important indicator of durability. While fuel economy is now the driving force in next generation lubricant development, it is clearly recognized that any improvements in fuel economy must not be at the expense of axle durability or performance. Fuel economy improvements can be measured via the U.S. EPA 55/45 driving cycles(1). Automotive manufacturers use this test to certify a vehicle’s fuel economy. This test can also be used to show fuel economy improvements in gear oil lubricants. Many manufacturers feel that stabilized operating temperature under the proper controlled conditions is an important indicator of the durability performance of a lubricant under severe conditions. In the case of operating temperature assessment, there exists no standard test method or methodology. Typically, when applied in a laboratory test stand a single axle is broken-in and then used repeatedly to evaluate many lubricants. Under severe conditions, the stabilized operating temperatures for a given reference oil decreases each time it is run in an axle. As the number of test runs on an axle increases the stabilized operating temperature of the reference oil is lower. This poses a problem when evaluating candidate lubricants. With a changing target, how can a lubricant be accurately evaluated? This paper describes a laboratory test method that accounts for test-to-test changes in the axle and gives the lubricant formulator an accurate way of comparing test results. In addition, common pitfalls of this method and operating guidelines will be described. 2002-01-1691 Developing Next Generation Axle Fluids: Part I – Test Methodology to Measure Durability and Temperature Reduction Properties of Axle Gear Oils Edward S. Akucewich, James N. Vinci, Farrukh S. Qureshi and Robert W. Cain The Lubrizol Corporation Copyright ? 2002 Society of Automotive Engineers, Inc. 2 The remainder of this paper is divided into four parts. First, the test stand used to develop and utilize the test procedure is described. Second, the test methodology is discussed in detail. The third section focuses on presenting test results that demonstrate the usefulness of the test methodology. Finally, the last section summarizes the paper’s findings and offers some conclusions. PART 1 - AXLE TEST STAND CONFIGURATION This full-scale axle dynamometer test stand was designed and set up to simulate a variety of operating conditions. A schematic of the test stand is shown in Figure 1. This figure illustrates the axle rig and its major components. Figure 2 shows a picture of the test stand. Figure 1: Schematic of Axle Test Stand Input torque Output Torque Meter (2) Output Torque Meter (1) Box shroud + fan (optional) ENGINE: V8 GASOLINE DynamometerDynamometer Speed Increaser Speed Increaser 3 Figure 2: Photograph of Test Stand STAND CONFIGURATION - Power is supplied to the axle by a gasoline fueled 7.4 liter V8 engine through a heavy duty 4-speed automatic transmission that can be automatically shifted by the data acquisition and control (DAC) system. The axle used for lubricant evaluation is rigidly mounted to the stand. The power driven through the axle is absorbed by two air gap eddy current dynamometers. A speed increaser is placed between the axle wheel end and the dynamometer to boost output speed to the dynamometer for low speed applications. The stand used is flexible and with a quick change of torque meters and/or axle fixtures is able to accommodate a wide range of axle sizes, from small passenger vehicle axles to large on highway truck axles. TORQUE METERS - A single in-line torque meter integral to the drive shaft measures the input pinion torque to the axle. Two in-line torque meters measure the output torque from the axle to the dynamometers. One output torque meter has been placed between each axle wheel end and speed increaser. In addition, the torque meters used are the enhanced accuracy, DC operated models. This was done to increase and maintain a high degree of accuracy and repeatability. These torque meters are periodically dead weight calibrated to insure accurate torque measurements. AXLE COOLING AND TEMPERATURE MONITORING - Behind the axle a fan is positioned to provide airflow across the axle. This was done to simulate the actual airflow cooling experienced in field tests. The fan speed, size and position were selected to produce temperatures in the axle which match field test data for the axle being tested. In addition, two water spray nozzles are positioned around the axle. These spray nozzles are used for two purposes. First, they are used to control the lubricant temperature during axle break-in. Second, they provide protection against high axle lubricant temperatures. Depending upon the lubricant under evaluation, this test procedure has the potential of experiencing very high axle lubricant 4 temperatures. To protect the axle, high temperature limits have been put in place for each test stage. Another major concern is the measurement of the ambient air and axle lubricant temperatures. Thus, care was taken to properly position the thermocouples. The axle lubricant temperature is measured by a thermocouple positioned directly next to the axle ring gear. The thermocouple is held in place by a specially modified axle cover. The ambient air temperature is measured by placing a thermocouple in the air stream produced by the fan. Both thermocouples are periodically calibrated to insure accurate temperature measurements. DATA ACQUISITION AND CONTROL SYSTEM - A DSP Redline ADAPT / MRTP system is used to control the operation of the stand and to acquire data throughout the test. In addition to the ambient and lubricant temperatures, this system monitors and records additional temperatures (engine oil, transmission oil, dyno, gear box, fuel, and coolant), torques (input and two outputs), speeds (engine, pinion, axle shafts, and dynos) and axle efficiency (ratio of output torque to input torque) throughout the test. Data is logged periodically. This system controls the operation of the stand with five control loops. ? Two control loops are used to maintain the desired pinion speed. This is done by modulating each dynamometer current to achieve a desired pinion rpm. ? The load on the pinion is maintained by adjusting the engine throttle. ? A fourth control loop is used to control the axle lubricant temperature during axle break in and to prevent high temperatures from damaging the axle during lubricant evaluations. ? Finally, a fifth control loop is used to insure that the automatic transmission is running each test stage in the appropriate gear. It is important that the automatic transmission is operating in the proper gear. Some of the test stages during this test run at relatively high loads. Premature failure will occur if the transmission does not operate in the appropriate gear for a given test stage. PART 2 - TEST METHOD In general, the evaluation of the lubricant’s durability was assessed by determining its stabilized operating temperature and axle efficiency at a number of discrete speed / torque conditions. The test procedure used is described below. REFERENCE OILS - Reference oils are critical to this test methodology. For the development of this test procedure and evaluation of lubricants, two reference oils were used. The fluids used as reference oils are as follows: Good Reference: Synthetic SAE 75W-140 Poor Reference: Synthetic SAE 75W-90 The good reference has been shown to provide outstanding performance in a wide variety of severe service applications. This fluid provided excellent temperature reduction in a controlled severe duty field test. This reference oil is used to break-in the axle and is periodically tested on a given axle to track any changes that might occur in stabilized operating temperatures. The poor reference was also field tested and did not provide the same level of durability or temperature reduction in severe conditions as the good reference. Testing has shown however that this lubricant provides measurable fuel economy benefits. This reference oil is used to verify that the test procedure can distinguish between oils that provide different levels of performance in the field. AXLE BREAK-IN - Before an axle can be used for lubricant evaluation, a break-in procedure is run. This procedure consists of a series of controlled load and speed conditions. The axle lubricant temperature is controlled throughout the break-in procedure where it is not allowed to exceed 250°F (121°C). The good reference oil is used for the break-in procedure. Running an adequate break-in is critical in preparing the axle for accurate lubricant evaluations. Once broken in an axle can run multiple candidate lubricant evaluations. TEST STAGES - Following the break-in procedure, candidate lubricants are evaluated by determining the stabilized operating temperature and efficiency at five combinations of speed and loads (stages) to approximate different severe operating conditions. Table 1 outlines the test conditions used. 5 Table 1 Durability and Operating Temperature Test Conditions STAGE GENERAL CONDITION CORRELATION I High torque / low speed Heavy Load - Start-Up II Moderate torque / high speed High Speed - Flat Surface III Moderate torque / moderate-high speed Heavy Load - Flat Surface IV Moderate-high torque / moderate speed Heavy Load - Moderate Grade V High Torque / low-moderate speed Heavy Load - Steep Grade Each of the load stages is run until a stabilized lubricant temperature is achieved. This typically takes 1.5 to 2.5 hours. Once a stabilized temperature is reached, the next test stage is started. This cycle is repeated until all test stages have been evaluated. At the completion of each test stage, the ambient air temperature, stabilized lubricant temperature and stabilized axle efficiency is recorded(2). AMBIENT AIR TEMPERATURE ADJUSTMENTS - It has been observed that changes in ambient air temperature affect the stabilized operating temperature of the axle lubricant. Since this test method was run in a laboratory where the ambient air temperature may vary, changes in ambient air temperatures must be accounted for. Adjusting the axle lubricant temperature to account for ambient air temperature changes is done by normalizing the axle lubricant temperature relative to an ambient air temperature of 80°F with the following equation: Tcorrected = Taxle + (80°F – Tambient) Where, Tcorrected = lubricant temperature (°F) corrected for the ambient air temperature. Taxle = measured lubricant temperature (°F). Tambient = measured ambient air temperature (°F). Before applying any of the methodology described below, the axle lubricant temperature is adjusted to account for ambient air temperature differences. REFERENCE TEMPERATURE CHANGES - As the number of tests run on an axle increases, the stabilized operating temperature for a given load condition of any single oil is lower. This fact poses a problem when evaluating a candidate lubricant. To solve this problem in the past, reference oil is tested periodically and the candidate result is compared to the last reference test result. However, if the reference test temperature gets lower after each test run, comparing the candidate to the last reference result will make the candidate seem better than it actually is relative to the reference. Figure 3 shows the change in stabilized operating temperatures for stage V conditions on a test axle when the good reference oil is tested. The stabilized operating temperature goes down as the number of test runs on the axle increases. For this test procedure, this trend occurs on all 5 test stages. 6 Figure 3: Stabilized Operating Temperature For the Good Reference Oil Over the Life of a Test Axle Under Stage V Conditions REFERENCE TARGET TEMPERATURE - To make a fair comparison between a reference and a candidate, the reference oil’s stabilized operating temperature used for comparison should be adjusted for the number of runs made on the axle. This adjustment must be done for each test stage and lubricant evaluated on an axle. The adjusted reference oil temperature or “reference target temperature” can then be compared to the candidate oil’s stabilized operating temperature for the load stage in question. Based on the reference test data, an equation for each test stage can be generated taking into account the reduction in the reference stabilized operating temperature as the number of test runs increases on an axle. This must be done for each axle tested. Once generated, candidate results can be accurately compared to reference oil performance. Figure 4 shows a curve fitted to the stabilized operating temperatures of the good reference oil for Stage V test conditions. Stabilized Axle Temperature Good Reference Oil Stage V Conditions 180 200 220 240 260 280 Increased Axle Runs Corrected Temperature (Deg F) 7 Figure 4: Curve Fitted To Stabilized Operating Temperature Results for Good Reference Oil on a Test Axle Under Stage V Conditions From the equation developed in Figure 4, a reference target temperature can be calculated for each test run on the axle for each test stage. Candidate test results can now be accurately compared to reference test results. In addition, this method allows the formulator to more accurately compare results that were tested on different axles since your comparison is relative to the reference oil. AXLE EFFICIENCY CHANGES - Just as with the stabilized temperature, a similar effect occurs with the axle efficiency measurements on test axles. The axle efficiency gradually increases as the number of tests on an axle increases. Figure 5 shows the changes in the axle efficiency and the reference target efficiency equation developed from the test results. Stabilized Axle Temperature Good Reference Oil Stage V Conditions y = 0.0172x2 - 1.4508x + 237.02 R2 = 0.9302 200 210 220 230 240 250 260 Increased Axle Runs Corrected Temperature (Deg F) 8 Figure 5: Stabilized Axle Efficiency Values For the Good Reference Oil Over Life of a Test Axle Under Stage II Conditions It has been our experience with this test procedure that the stabilized axle efficiency for any test stage is inversely proportional to the stabilized operating temperature. The higher the efficiency, the lower the operating temperature. Thus our primary focus in the paper is on the operating temperatures and not the axle efficiencies. The test methodology described in this paper can be applied to both. ASSESSMENT OF TEST REPEATABILITY - Test repeatability can be estimated from the reference test results on each axle. This is done by comparing the differences between the actual stabilized operating temperature and the calculated reference target temperature for each reference test in an axle for a given test stage. For example, the test repeatability was calculated to be 5.9°F for Stage V conditions shown in Figure 4. Our experience has been that repeatability estimates range from 0.5 to 8.0° F depending upon the test stage run, axle used and lubricants tested.(3, 4) The test repeatability on any given axle is greatly affected by the quality of the candidate oils tested. Running a poor quality oil affects the results of the tests that run on the axle after it finishes. This introduces additional variability in the test stand. Thus it is important to run go
收藏