齒輪齒條轉(zhuǎn)向器及轉(zhuǎn)向梯形設(shè)計(jì)
齒輪齒條轉(zhuǎn)向器及轉(zhuǎn)向梯形設(shè)計(jì),齒輪,齒條,轉(zhuǎn)向器,轉(zhuǎn)向,梯形,設(shè)計(jì)
齒輪齒條轉(zhuǎn)向器及轉(zhuǎn)向梯形設(shè)計(jì)設(shè)計(jì)
齒輪齒條轉(zhuǎn)向器及轉(zhuǎn)向梯形設(shè)計(jì)
2019年10月
摘要
本設(shè)計(jì)課題為汽車前輪轉(zhuǎn)向系統(tǒng)的設(shè)計(jì),課題以機(jī)械式轉(zhuǎn)向系統(tǒng)的齒輪齒條式轉(zhuǎn)向器設(shè)計(jì)及校核、整體式轉(zhuǎn)向梯形機(jī)構(gòu)的設(shè)計(jì)及驗(yàn)算為中心。首先對(duì)汽車轉(zhuǎn)向系進(jìn)行概述,二是作設(shè)計(jì)前期數(shù)據(jù)準(zhǔn)備,三是轉(zhuǎn)向器形式的選擇以及初定各個(gè)參數(shù),四是對(duì)齒輪齒條式轉(zhuǎn)向器的主要部件進(jìn)行受力分析與數(shù)據(jù)校核,五是對(duì)整體式轉(zhuǎn)向梯形機(jī)構(gòu)的設(shè)計(jì)以及驗(yàn)算,并根據(jù)梯形數(shù)據(jù)對(duì)轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)作尺寸設(shè)計(jì)。
在轉(zhuǎn)向梯形機(jī)構(gòu)設(shè)計(jì)方面。運(yùn)用了優(yōu)化計(jì)算工具M(jìn)atlab進(jìn)行設(shè)計(jì)及驗(yàn)算。Matlab強(qiáng)大的計(jì)算功能以及簡(jiǎn)單的程序語法,使設(shè)計(jì)在參數(shù)變更時(shí)得到快捷而可靠的數(shù)據(jù)分析和直觀的二維曲線圖。最后設(shè)計(jì)中運(yùn)用AutoCAD和CATIA作出齒輪齒條式轉(zhuǎn)向器的零件圖以及裝配圖。
關(guān)鍵詞: 轉(zhuǎn)向機(jī)構(gòu),齒輪齒條,整體式轉(zhuǎn)向梯形,Matlab梯形
Abstract
The title of this topic is the design of steering system. Rack and pinion steering of Mechanical steering system and integrated Steering trapezoid mechanism gear to the design as the center. Firstly make an overview of the Steering System. Secondly take a preparation of the data of the design. Thirdly, make a choice of the steering form and determine the primary parameters and design the structure of Rack and pinion steering. Fourthly, Stress analysis and data checking of the Rack and pinion steering. Fifthly, design of Steering trapezoid mechanism, according to the trapezoidal data make an analysis and design of Steering linkage.
In the design of integrated Steering trapezoid mechanism the computational tools Matlab had been used to Design and Checking of the data. The powerful computing and Intuitive charts of the Matlab can give us Accurate and quickly data. In the end AutoCAD and CATIA were used to make a rack and pinion steering parts diagrams and assembly drawings
Keywords: Steering system,Mechanical Type Steering Gear and Gear Rack,
Integrated Steering trapezoid,Matlab Trapezoid
目錄
1 緒論 1
1.1 汽車轉(zhuǎn)向系統(tǒng)概述 1
1.2 汽車轉(zhuǎn)向系統(tǒng)的國(guó)內(nèi)外現(xiàn)狀及發(fā)展趨勢(shì) 2
1.3 研究?jī)?nèi)容及論文構(gòu)成 3
2 機(jī)械轉(zhuǎn)向系統(tǒng)的性能要求及參數(shù) 5
2.1 機(jī)械轉(zhuǎn)向系統(tǒng)的結(jié)構(gòu)組成 5
2.2 轉(zhuǎn)向系統(tǒng)的性能要求 6
2.3 轉(zhuǎn)向系的效率 7
2.4 傳動(dòng)比特性 9
2.5 轉(zhuǎn)向器傳動(dòng)副的傳動(dòng)間隙 11
3 機(jī)械式轉(zhuǎn)向器總體方案初步設(shè)計(jì) 12
3.1 轉(zhuǎn)向器的分類及設(shè)計(jì)選擇 12
3.2 齒輪齒條式轉(zhuǎn)向器的基本設(shè)計(jì) 12
3.2.1 齒輪齒條式轉(zhuǎn)向器的結(jié)構(gòu)選擇 12
3.2.2 齒輪齒條式轉(zhuǎn)向器的布置形式 14
3.2.3 設(shè)計(jì)目標(biāo)參數(shù)表以及對(duì)應(yīng)的轉(zhuǎn)向輪偏角計(jì)算 15
3.2.4 轉(zhuǎn)向器參數(shù)選取與計(jì)算 16
3.2.5 齒輪軸的結(jié)構(gòu)設(shè)計(jì) 19
3.2.6 轉(zhuǎn)向器材料及其他零件選擇 20
4 齒輪齒條轉(zhuǎn)向器數(shù)據(jù)校核 21
4.1 齒條的強(qiáng)度計(jì)算 21
4.1.1 齒條受力分析 21
4.1.2 齒條齒部彎曲強(qiáng)度的計(jì)算 22
4.2 小齒輪的強(qiáng)度計(jì)算 23
4.2.1 齒面接觸疲勞強(qiáng)度計(jì)算 23
4.2.2 齒輪齒根彎曲疲勞強(qiáng)度計(jì)算 26
4. 3 齒輪軸強(qiáng)度校核 27
5 轉(zhuǎn)向梯形機(jī)構(gòu)的設(shè)計(jì) 31
5.1 轉(zhuǎn)向梯形機(jī)構(gòu)概述 31
5.2 整體式轉(zhuǎn)向梯形機(jī)構(gòu)方案分析 32
5.3 整體式轉(zhuǎn)向梯形機(jī)構(gòu)數(shù)學(xué)模型分析 32
5.4 基于Matlab的整體式轉(zhuǎn)向梯形機(jī)構(gòu)優(yōu)化設(shè)計(jì) 35
5.4.1 轉(zhuǎn)向梯形機(jī)構(gòu)的優(yōu)化概況 35
5.4.2 轉(zhuǎn)向梯形機(jī)構(gòu)設(shè)計(jì)思路 36
5.4.3 基于Matlab的轉(zhuǎn)向梯形機(jī)構(gòu)設(shè)計(jì) 36
5.5 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的設(shè)計(jì) 43
5.5.1 轉(zhuǎn)向傳送機(jī)構(gòu)的臂、桿與球銷 43
5.5.2 轉(zhuǎn)向橫拉桿及其端部 44
6 基于CATIA的齒輪齒條式轉(zhuǎn)向系統(tǒng)的三維建模 46
6.1 CATIA軟件簡(jiǎn)介 46
6.2 齒輪齒條式轉(zhuǎn)向系統(tǒng)的主要部件 CATIA 三維設(shè)計(jì) 46
結(jié)論 49
參考文獻(xiàn) 50
1 緒論
1.1 汽車轉(zhuǎn)向系統(tǒng)概述
汽車在行駛的過程中,需按駕駛員的意志改變其行駛方向。就輪式汽車而言,實(shí)現(xiàn)汽車轉(zhuǎn)向的方法是, 駕駛員通過一套專設(shè)的機(jī)構(gòu),使汽車轉(zhuǎn)向橋(一般是前橋)上的車輪(轉(zhuǎn)向輪)相對(duì)于汽車縱橫線偏轉(zhuǎn)一定角度。這一套用來改變或恢復(fù)汽車行駛方向的專設(shè)機(jī)構(gòu)如圖1.1所示,即稱為汽車轉(zhuǎn)向系統(tǒng)[1]。
圖 1-1汽車轉(zhuǎn)向系統(tǒng)
汽車轉(zhuǎn)向系統(tǒng)分為兩大類:機(jī)械轉(zhuǎn)向系統(tǒng)和動(dòng)力轉(zhuǎn)向系統(tǒng)。
1、機(jī)械轉(zhuǎn)向系統(tǒng)
機(jī)械轉(zhuǎn)向系的能量來源是人力,所有傳力件都是機(jī)械的,由轉(zhuǎn)向操縱機(jī)構(gòu)(方向盤)、轉(zhuǎn)向器、轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)三大部分組成。汽車的轉(zhuǎn)向運(yùn)動(dòng)是由駕駛員操縱方向盤,通過轉(zhuǎn)向器和一系列的桿件傳遞到轉(zhuǎn)向輪來完成的。機(jī)械式轉(zhuǎn)向系統(tǒng)工作過程為:駕駛員對(duì)轉(zhuǎn)向盤施加的轉(zhuǎn)向力矩通過轉(zhuǎn)向軸輸入轉(zhuǎn)向器,減速傳動(dòng)裝置的轉(zhuǎn)向器中有1、2 級(jí)減速傳動(dòng)副,經(jīng)轉(zhuǎn)向器放大后的力矩和減速后的運(yùn)動(dòng)傳到轉(zhuǎn)向橫拉桿,再傳給固定于轉(zhuǎn)向節(jié)上的轉(zhuǎn)向節(jié)臂,使轉(zhuǎn)向節(jié)和它所支承的轉(zhuǎn)向輪偏轉(zhuǎn),從而實(shí)現(xiàn)汽車的轉(zhuǎn)向。純機(jī)械式轉(zhuǎn)向系統(tǒng)根據(jù)轉(zhuǎn)向器形式可以分為:齒輪齒條式、循環(huán)球式、蝸桿滾輪式、蝸桿指銷式。
2、動(dòng)力轉(zhuǎn)向系統(tǒng)
動(dòng)力轉(zhuǎn)向系統(tǒng)除了轉(zhuǎn)向操縱機(jī)構(gòu)(方向盤)、轉(zhuǎn)向器、轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)三大部分外,其最主要的動(dòng)力來源是轉(zhuǎn)向助力裝置。由于轉(zhuǎn)向助力裝置最常用的是一套液壓系統(tǒng),因此也就離不開泵、油管、閥、活塞和儲(chǔ)油罐,它們分別相當(dāng)于電路系統(tǒng)中的電池、導(dǎo)線、開關(guān)、電機(jī)和地線的作用。動(dòng)力轉(zhuǎn)向系的發(fā)展經(jīng)過幾個(gè)階段,各個(gè)階段也有不同的動(dòng)力輔助系統(tǒng)。
20世紀(jì)50年代,美國(guó)GM公司率先在轎車上采用了液壓助力轉(zhuǎn)向系統(tǒng)。該系統(tǒng)是建立在機(jī)械系統(tǒng)的基礎(chǔ)之上,額外增加了一個(gè)液壓系統(tǒng)。為液壓助力轉(zhuǎn)向系統(tǒng)(HPS)。
1983年,在液壓助力系統(tǒng)基礎(chǔ)上發(fā)展起來的,日本Koyo公司推出了具備車速感應(yīng)功能的電控液壓助力轉(zhuǎn)向系統(tǒng)(EHPS)。
1988年日本Suzuki公司首先在小型轎車Cervo上配備了Koyo公司研發(fā)的轉(zhuǎn)向柱助力式電動(dòng)助力轉(zhuǎn)向系統(tǒng)。1990年日本Honda公司也在運(yùn)動(dòng)型轎車NSX上采用了自主研發(fā)的齒條助力式電動(dòng)助力轉(zhuǎn)向系統(tǒng),也就是現(xiàn)在應(yīng)用車型極為廣泛的EPS系統(tǒng)。
SBW線控轉(zhuǎn)向系統(tǒng)是繼EPS 后發(fā)展起來的新一代轉(zhuǎn)向系統(tǒng),具有比EPS 操縱穩(wěn)定性更好的特點(diǎn),它取消轉(zhuǎn)向盤與轉(zhuǎn)向輪之間的機(jī)械連接,完全由電能實(shí)現(xiàn)轉(zhuǎn)向,徹底擺脫傳統(tǒng)轉(zhuǎn)向系統(tǒng)所固有的限制,提高了汽車的安全性和駕駛的方便性[1]。
1.2 汽車轉(zhuǎn)向系統(tǒng)的國(guó)內(nèi)外現(xiàn)狀及發(fā)展趨勢(shì)
汽車轉(zhuǎn)向系統(tǒng)的發(fā)展經(jīng)歷了純機(jī)械式轉(zhuǎn)向系統(tǒng)、液壓助力轉(zhuǎn)向系統(tǒng) 、電動(dòng)助力轉(zhuǎn)向系統(tǒng)3個(gè)基本階段 , 線控轉(zhuǎn)向系統(tǒng)為其發(fā)展趨勢(shì)[1]。
隨著汽車工業(yè)的迅速發(fā)展,轉(zhuǎn)向裝置的結(jié)構(gòu)也有很大變化。汽車轉(zhuǎn)向器的結(jié)構(gòu)很多,從目前使用的普遍程度來看,主要的轉(zhuǎn)向器類型有4種:有蝸桿銷式(WP型)、蝸桿滾輪式(WR型)、循環(huán)球式(BS型)、齒條齒輪式(BP型),這四種轉(zhuǎn)向器型式,已經(jīng)被廣泛使用在汽車上。
1、汽車轉(zhuǎn)向系統(tǒng)在世界發(fā)展?fàn)顩r
據(jù)了解,在世界范圍內(nèi),汽車循環(huán)球式轉(zhuǎn)向器占45%左右,齒條齒輪式轉(zhuǎn)向器占40%左右,蝸桿滾輪式轉(zhuǎn)向器占10%左右,其它型式的轉(zhuǎn)向器占5%。循環(huán)球式轉(zhuǎn)向器一直在穩(wěn)步發(fā)展[1]。在西歐小客車中,齒條齒輪式轉(zhuǎn)向器有很大的發(fā)展。日本汽車轉(zhuǎn)向器的特點(diǎn)是循環(huán)球式轉(zhuǎn)向器占的比重越來越大,日本裝備不同類型發(fā)動(dòng)機(jī)的各類型汽車,采用不同類型轉(zhuǎn)向器,在公共汽車中使用的循環(huán)球式轉(zhuǎn)向器,已由60年代的62.5%,發(fā)展到現(xiàn)今的100%了(蝸桿滾輪式轉(zhuǎn)向器在公共汽車上已經(jīng)被淘汰)。大、小型貨車大都采用循環(huán)球式轉(zhuǎn)向器,但齒條齒輪式轉(zhuǎn)向器也有所發(fā)展。微型貨車用循環(huán)球式轉(zhuǎn)向器占65%,齒條齒輪式占35%[1]。
2、汽車轉(zhuǎn)向系統(tǒng)在國(guó)內(nèi)發(fā)展?fàn)顩r
我國(guó)的轉(zhuǎn)向器生產(chǎn),除早期投產(chǎn)的解放牌汽車用蝸桿滾輪式轉(zhuǎn)向器,東風(fēng)汽車用蝸桿肖式轉(zhuǎn)向器之外,其它大部分車型都采用循環(huán)球式結(jié)構(gòu),并都具有一定的生產(chǎn)經(jīng)驗(yàn)。目前解放、東風(fēng)也都在積極發(fā)展循環(huán)球式轉(zhuǎn)向器,并已在第二代換型車上普遍采用了循環(huán)球式轉(zhuǎn)向器。由此看出,我國(guó)的轉(zhuǎn)向器也在向大量生產(chǎn)循環(huán)球式轉(zhuǎn)向器發(fā)展
3、汽車轉(zhuǎn)向系統(tǒng)的發(fā)展趨勢(shì)
齒輪齒條式轉(zhuǎn)向器和循環(huán)球式轉(zhuǎn)向器,已成為當(dāng)今世界汽車上主要的兩種轉(zhuǎn)向器;而蝸輪—蝸桿式轉(zhuǎn)向器和蝸桿銷式轉(zhuǎn)向器,正在逐步被淘汰或保留較小的地位。
在小客車上發(fā)展轉(zhuǎn)向器的觀點(diǎn)各異,美國(guó)和日本重點(diǎn)發(fā)展循環(huán)球式轉(zhuǎn)向器,比率都已達(dá)到或超過90%;西歐則重點(diǎn)發(fā)展齒輪齒條式轉(zhuǎn)向器,比率超過50%,法國(guó)已高達(dá)95%[1]。
由于齒輪齒條式轉(zhuǎn)向器的種種優(yōu)點(diǎn),在小型車上的應(yīng)用(包括小客車、小型貨車或客貨兩用車)得到突飛猛進(jìn)的發(fā)展;而大型車輛則以循環(huán)球式轉(zhuǎn)向器為主要結(jié)構(gòu)。
從發(fā)展趨勢(shì)上看,國(guó)外整體式轉(zhuǎn)向器發(fā)展較快,而整體式轉(zhuǎn)向器中轉(zhuǎn)閥結(jié)構(gòu)是目前發(fā)展的方向。由于動(dòng)力轉(zhuǎn)向系統(tǒng)還是新的結(jié)構(gòu),各國(guó)的生產(chǎn)廠家都正在組織力量,大力開展試驗(yàn)研究工作,提高使用性能、減小總成體積、降低生產(chǎn)成本、保證產(chǎn)品質(zhì)量穩(wěn)定,以便逐步推廣和普及。
隨著科學(xué)技術(shù)的發(fā)展,國(guó)際經(jīng)濟(jì)形勢(shì)的變化對(duì)汽車乃至汽車轉(zhuǎn)向器的生產(chǎn)都有很大影響。特別是西方國(guó)家實(shí)行石油禁運(yùn)以來,世界經(jīng)濟(jì)形勢(shì)受沖擊很大。隨著能源危機(jī)的發(fā)展,汽車工業(yè)首當(dāng)其沖,其發(fā)展方向有很大變化。從汽車設(shè)計(jì)、制造到各總成部件的生產(chǎn)都隨著能源危機(jī)的發(fā)生而變化,表現(xiàn)在能源消耗、材料消耗、操縱輕便等各個(gè)方面。
1.3 研究?jī)?nèi)容及論文構(gòu)成
本課題主要研究機(jī)械式轉(zhuǎn)向系統(tǒng)的功能及構(gòu)成,主要從轉(zhuǎn)向系統(tǒng)的轉(zhuǎn)向器部分和轉(zhuǎn)向梯形機(jī)構(gòu)部分作分析研究。
1、轉(zhuǎn)向器設(shè)計(jì)部分:以齒輪齒條式轉(zhuǎn)向器作為中心,分析其效率、齒輪軸和齒條的設(shè)計(jì)及數(shù)據(jù)校核、其他一些組件的設(shè)計(jì)及標(biāo)準(zhǔn)件選取。
2、轉(zhuǎn)向梯形機(jī)構(gòu)部分:以整體式轉(zhuǎn)向梯形機(jī)構(gòu)作為中心,對(duì)阿克曼(Ackerman)理論轉(zhuǎn)向特性了解的基礎(chǔ)上,對(duì)轉(zhuǎn)向梯形機(jī)構(gòu)進(jìn)行數(shù)學(xué)模型分析。用計(jì)算機(jī)工具對(duì)轉(zhuǎn)向梯形進(jìn)行設(shè)計(jì),校核。并根據(jù)所得的結(jié)果對(duì)傳動(dòng)機(jī)構(gòu)的尺寸作設(shè)計(jì)。
2 機(jī)械轉(zhuǎn)向系統(tǒng)的性能要求及參數(shù)
2.1 機(jī)械轉(zhuǎn)向系統(tǒng)的結(jié)構(gòu)組成
轉(zhuǎn)向系是用來保持或者改變汽車行使方向的機(jī)構(gòu),一般轉(zhuǎn)向系組成如下圖1.2[2]包括轉(zhuǎn)向操縱機(jī)構(gòu)(轉(zhuǎn)向盤、轉(zhuǎn)向上、下軸、)、轉(zhuǎn)向器、轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)(轉(zhuǎn)向拉桿、轉(zhuǎn)向節(jié))等。轉(zhuǎn)向系統(tǒng)應(yīng)準(zhǔn)確、快速、平穩(wěn)地響應(yīng)駕駛員的轉(zhuǎn)向指令,轉(zhuǎn)向行使后或受到外界擾動(dòng)時(shí),在駕駛員松開方向盤的狀態(tài)下,應(yīng)保證汽車自動(dòng)返回穩(wěn)定的直線行使?fàn)顟B(tài)。
圖1-2 轉(zhuǎn)向系的基本構(gòu)成
1-方向盤;2-轉(zhuǎn)向上軸;3-托架; 4-萬向節(jié); 5-轉(zhuǎn)向下軸; 6-防塵罩 ;7-轉(zhuǎn)向器 ;8-轉(zhuǎn)向拉桿
1、轉(zhuǎn)向操縱機(jī)構(gòu)
轉(zhuǎn)向操縱機(jī)構(gòu)包括轉(zhuǎn)向盤,轉(zhuǎn)向軸,轉(zhuǎn)向管柱。有時(shí)為了布置方便,減小由于裝配位置誤差及部件相對(duì)運(yùn)動(dòng)所引起的附加載荷,提高汽車正面碰撞的安全性以及便于拆裝,在轉(zhuǎn)向軸與轉(zhuǎn)向器的輸入端之間安裝轉(zhuǎn)向萬向節(jié),采用柔性萬向節(jié)可減少傳至轉(zhuǎn)向軸上的振動(dòng),但柔性萬向節(jié)如果過軟,則會(huì)影響轉(zhuǎn)向系的剛度。采用動(dòng)力轉(zhuǎn)向時(shí),還應(yīng)有轉(zhuǎn)向動(dòng)力系統(tǒng)。
2、轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)
轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)包括轉(zhuǎn)向臂、轉(zhuǎn)向縱拉桿、轉(zhuǎn)向節(jié)臂、轉(zhuǎn)向梯形臂以及轉(zhuǎn)向橫拉桿等。轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)用于把轉(zhuǎn)向器輸出的力和運(yùn)動(dòng)傳給左、右轉(zhuǎn)向節(jié)并使左、右轉(zhuǎn)向輪按一定關(guān)系進(jìn)行偏轉(zhuǎn)。
3、轉(zhuǎn)向器
轉(zhuǎn)向器是完成由旋轉(zhuǎn)運(yùn)動(dòng)到直線運(yùn)動(dòng)(或近似直線運(yùn)動(dòng))的一組齒輪機(jī)構(gòu),同時(shí)也是轉(zhuǎn)向系中的減速傳動(dòng)裝置。 目前較常用的有齒輪齒條式、循環(huán)球曲柄指銷式、蝸桿曲柄指銷式、循環(huán)球-齒條齒扇式、蝸桿滾輪式等。
2.2 轉(zhuǎn)向系統(tǒng)的性能要求
汽車轉(zhuǎn)向系統(tǒng)是用于改變或保持汽車行駛方向的專門機(jī)構(gòu)。起作用是使汽車在行駛過程中能按照駕駛員的操縱要求而適時(shí)地改變其行駛方向,并在受到路面?zhèn)鱽淼呐既粵_擊及汽車意外地偏離行駛方向時(shí),能與行駛系統(tǒng)配合共同保持汽車?yán)^續(xù)穩(wěn)定行駛。因此,轉(zhuǎn)向系統(tǒng)的性能直接影響著汽車的操縱穩(wěn)定性和安全性。
一般來說,對(duì)轉(zhuǎn)向系統(tǒng)的要求如下:
1、合理設(shè)置傳動(dòng)比,使操縱輕便,轉(zhuǎn)向系傳動(dòng)比包括轉(zhuǎn)向系的角傳動(dòng)比(方向盤轉(zhuǎn)角與轉(zhuǎn)向輪轉(zhuǎn)角之比)和轉(zhuǎn)向系的力傳動(dòng)比。在轉(zhuǎn)向盤尺寸和轉(zhuǎn)向輪阻力一定時(shí),角傳動(dòng)比增加,則轉(zhuǎn)向輕便,轉(zhuǎn)向靈敏度降低;角傳動(dòng)比減小,則轉(zhuǎn)向沉重,轉(zhuǎn)向靈敏度提高。轉(zhuǎn)向角傳動(dòng)比不宜低于15-16;也不宜過大,通常以轉(zhuǎn)向盤轉(zhuǎn)動(dòng)圈數(shù)和轉(zhuǎn)向輕便性來確定。一般來說,轎車轉(zhuǎn)向盤轉(zhuǎn)動(dòng)圈數(shù)不宜大于4圈,對(duì)轎車來說,有動(dòng)力轉(zhuǎn)向時(shí)的轉(zhuǎn)向力約為20-50N;無動(dòng)力轉(zhuǎn)向時(shí)為50-100N[3]。
2、轉(zhuǎn)向輪應(yīng)具有自動(dòng)回正能力。轉(zhuǎn)向輪的回正力來源于輪胎的側(cè)偏特性和車輪的定位參數(shù)。汽車的穩(wěn)定行使,必須保證有合適的前輪定位參數(shù),并注意控制轉(zhuǎn)向系統(tǒng)的內(nèi)部摩擦阻力的大小和阻尼值。
3、轉(zhuǎn)向桿系和懸架導(dǎo)向機(jī)構(gòu)共同作用時(shí),必須盡量減小其運(yùn)動(dòng)干涉。應(yīng)從設(shè)計(jì)上保證各桿系的運(yùn)動(dòng)干涉足夠小。
4、轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的球頭處,應(yīng)有消除因磨損而產(chǎn)生的間隙的調(diào)整機(jī)構(gòu)以及提高轉(zhuǎn)向系的可靠性。
5、轉(zhuǎn)向軸和轉(zhuǎn)向盤應(yīng)有使駕駛員在車禍中避免或減輕傷害的防傷機(jī)構(gòu)。
6、汽車在作轉(zhuǎn)向運(yùn)動(dòng)時(shí),所以車輪應(yīng)繞同一瞬心旋轉(zhuǎn),不得有側(cè)滑;同時(shí),轉(zhuǎn)向盤和轉(zhuǎn)向輪轉(zhuǎn)動(dòng)方向一致。
7、當(dāng)轉(zhuǎn)向輪受到地面沖擊時(shí),轉(zhuǎn)向系統(tǒng)傳遞到方向盤上的反沖力要盡可能小
8、在任何行使?fàn)顟B(tài)下,轉(zhuǎn)向輪不應(yīng)產(chǎn)生擺振。
9、保證轎車有較高的機(jī)動(dòng)性,具有迅速和小轉(zhuǎn)彎行駛能力。機(jī)動(dòng)性是通過汽車的最小轉(zhuǎn)彎半徑來體現(xiàn)的,而最小轉(zhuǎn)彎半徑由內(nèi)轉(zhuǎn)向車輪的極限轉(zhuǎn)角、汽車的軸距、主銷偏移距決定的,一般的極限轉(zhuǎn)角越大,軸距和主銷偏移距越小,則最小轉(zhuǎn)彎半徑越小。
10、合理設(shè)計(jì)轉(zhuǎn)向梯形。轉(zhuǎn)向時(shí)內(nèi)外車輪間的轉(zhuǎn)角協(xié)調(diào)關(guān)系是通過合理設(shè)計(jì)轉(zhuǎn)向梯形來保證的。對(duì)于采用齒輪齒條轉(zhuǎn)向器的轉(zhuǎn)向系來說,轉(zhuǎn)向盤與轉(zhuǎn)向輪轉(zhuǎn)角間的協(xié)調(diào)關(guān)系是通過合理選擇小齒輪與齒條的參數(shù)、合理布置小齒輪與齒條的相對(duì)位置來實(shí)現(xiàn)的,而且前置轉(zhuǎn)向梯形和后置轉(zhuǎn)向梯形恰恰相反。轉(zhuǎn)向系的間隙主要是通過各球頭皮碗和轉(zhuǎn)向器的調(diào)隙機(jī)構(gòu)來調(diào)整的。合理的選擇轉(zhuǎn)向梯形的斷開點(diǎn)可以減小轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)與懸架導(dǎo)向機(jī)構(gòu)的運(yùn)動(dòng)干涉。
2.3 轉(zhuǎn)向系的效率
功率P1從轉(zhuǎn)向軸輸入,經(jīng)轉(zhuǎn)向搖臂軸輸出所求得的效率稱為轉(zhuǎn)向器的正效率,符號(hào)η+表示,反之稱為逆效率,用符號(hào)η-表示。
正效率η+計(jì)算公式:
(2.1)
逆效率η-計(jì)算公式:
(2.2)
式中,P1為作用在轉(zhuǎn)向軸上的功率;P2為轉(zhuǎn)向器中的磨擦功率;P3為作用在轉(zhuǎn)向搖臂軸上的功率。
正效率高,轉(zhuǎn)向輕便;轉(zhuǎn)向器應(yīng)具有一定逆效率,以保證轉(zhuǎn)向輪和轉(zhuǎn)向盤的自動(dòng)返回能力。但為了減小傳至轉(zhuǎn)向盤上的路面沖擊力,防止打手,又要求此逆效率盡可能低。
影響轉(zhuǎn)向器正效率的因素有轉(zhuǎn)向器的類型、結(jié)構(gòu)特點(diǎn)、結(jié)構(gòu)參數(shù)和制造質(zhì)量等[3]。
1、轉(zhuǎn)向器的正效率
影響轉(zhuǎn)向器正效率的因素有轉(zhuǎn)向器的類型、結(jié)構(gòu)特點(diǎn)、結(jié)構(gòu)參數(shù)和制造質(zhì)量等。
(1)、轉(zhuǎn)向器類型、結(jié)構(gòu)特點(diǎn)與效率。
在四種轉(zhuǎn)向器中,齒輪齒條式、循環(huán)球式轉(zhuǎn)向器的正效率比較高,而蝸桿指銷式特別是固定銷和蝸桿滾輪式轉(zhuǎn)向器的正效率要明顯的低些。
同一類型轉(zhuǎn)向器,因結(jié)構(gòu)不同效率也不一樣。如蝸桿滾輪式轉(zhuǎn)向器的滾輪與支持軸之間的軸承可以選用滾針軸承、圓錐滾子軸承和球軸承。選用滾針軸承時(shí),除滾輪與滾針之間有摩擦損失外,滾輪側(cè)翼與墊片之間還存在滑動(dòng)摩擦損失,故這種軸向器的效率η+僅有54%。另外兩種結(jié)構(gòu)的轉(zhuǎn)向器效率分別為70%和75%[3]。
轉(zhuǎn)向搖臂軸的軸承采用滾針軸承比采用滑動(dòng)軸承可使正或逆效率提高約10%。
(2)、轉(zhuǎn)向器的結(jié)構(gòu)參數(shù)與效率
如果忽略軸承和其經(jīng)地方的摩擦損失,只考慮嚙合副的摩擦損失,對(duì)于蝸桿類轉(zhuǎn)向器,其效率可用下式計(jì)算
(2.3)
式中,為蝸桿(或螺桿)的螺線導(dǎo)程角;ρ為摩擦角,ρ=arctanf;f為磨擦系數(shù)。
2、轉(zhuǎn)向器的逆效率
根據(jù)逆效率不同,轉(zhuǎn)向器有可逆式、極限可逆式和不可逆式之分。
路面作用在車輪上的力,經(jīng)過轉(zhuǎn)向系可大部分傳遞到轉(zhuǎn)向盤,這種逆效率較高的轉(zhuǎn)向器屬于可逆式。它能保證轉(zhuǎn)向輪和轉(zhuǎn)向盤自動(dòng)回正,既可以減輕駕駛員的疲勞,又可以提高行駛安全性。但是,在不平路面上行駛時(shí),傳至轉(zhuǎn)向盤上的車輪沖擊力,易使駕駛員疲勞,影響安全行駕駛。
屬于可逆式的轉(zhuǎn)向器有齒輪齒條式和循環(huán)球式轉(zhuǎn)向器。
不可逆式轉(zhuǎn)向器是指車輪受到的沖擊力不能傳到轉(zhuǎn)向盤的轉(zhuǎn)向器。該沖擊力轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的零件承受,因而這些零件容易損壞。同時(shí),它既不能保證車輪自動(dòng)回正,駕駛員又缺乏路面感覺,因此,現(xiàn)代汽車不采用這種轉(zhuǎn)向器。極限可逆式轉(zhuǎn)向器介于可逆式與不可逆式轉(zhuǎn)向器兩者之間。在車輪受到?jīng)_擊力作用時(shí),此力只有較小一部分傳至轉(zhuǎn)向盤。
如果忽略軸承和其它地方的磨擦損失,只考慮嚙合副的磨擦損失,則逆效率可用下式計(jì)算
(2.4)
式(2.3)和式(2.4)表明:增加導(dǎo)程角0,正、逆效率均增大。受-增大的影響,0不宜取得過大。當(dāng)導(dǎo)程角小于或等于磨擦角時(shí),逆效率為負(fù)值或者為零,此時(shí)表明該轉(zhuǎn)向器是不可逆式轉(zhuǎn)向器。為此,導(dǎo)程角必須大于磨擦角。
2.4 傳動(dòng)比特性
1、轉(zhuǎn)向系傳動(dòng)比
轉(zhuǎn)向系的傳動(dòng)比包括轉(zhuǎn)向系的角傳動(dòng)比和轉(zhuǎn)向系的力傳動(dòng)比。
(2.5)
式中為從輪胎接地面中心作用在兩個(gè)轉(zhuǎn)向輪上的合力,為作用在轉(zhuǎn)向盤上的手力。
轉(zhuǎn)向系的角傳動(dòng)比:
(2.6)
式中為轉(zhuǎn)向盤角速度;為轉(zhuǎn)向節(jié)偏轉(zhuǎn)角速度;為轉(zhuǎn)向盤轉(zhuǎn)向角增量;為轉(zhuǎn)向節(jié)轉(zhuǎn)向增量; 為時(shí)間增量。
轉(zhuǎn)向系的角傳動(dòng)比由轉(zhuǎn)向器角傳動(dòng)比和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)角傳動(dòng)比組成,即:
(2.7)
轉(zhuǎn)向器的角傳動(dòng)比:
(2.8)
式中為搖臂軸角速度;為搖臂軸轉(zhuǎn)角增量。
轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的角傳動(dòng)比:
(2.9)
2、力傳動(dòng)比與轉(zhuǎn)向系角傳動(dòng)比的關(guān)系
轉(zhuǎn)向阻力Fw與轉(zhuǎn)向阻力矩Mr的關(guān)系式:
(2.10)
a為主銷偏距。
作用在轉(zhuǎn)向盤上的手力Fh與作用在轉(zhuǎn)向盤上的力矩Mh的關(guān)系式:
(2.11)
式中為方向盤直徑
將式(2-10)、式(2-11)代入 后得到:
(2.12)
如果忽略磨擦損失,根據(jù)能量守恒原理,2Mr/Mh可用下式表示
(2.13)
將式(2.13)代入式(2.12)后得到:
(2.14)
當(dāng)a和Dsw不變時(shí),力傳動(dòng)比越大,雖然轉(zhuǎn)向越輕,但也越大,表明轉(zhuǎn)向不靈敏。
3、轉(zhuǎn)向器角傳動(dòng)比的選擇
轉(zhuǎn)向器角傳動(dòng)比可以設(shè)計(jì)成減小、增大或保持不變的。影響選取角傳動(dòng)比變化規(guī)律的主要因素是轉(zhuǎn)向軸負(fù)荷大小和對(duì)汽車機(jī)動(dòng)能力的要求。
若轉(zhuǎn)向軸負(fù)荷小或采用動(dòng)力轉(zhuǎn)向的汽車,不存在轉(zhuǎn)向沉重問題,應(yīng)取較小的轉(zhuǎn)向器角傳動(dòng)比,以提高汽車的機(jī)動(dòng)能力。若轉(zhuǎn)向軸負(fù)荷大,汽車低速急轉(zhuǎn)彎時(shí)的操縱輕便性問題突出,應(yīng)選用大些的轉(zhuǎn)向器角傳動(dòng)比。
汽車以較高車速轉(zhuǎn)向行駛時(shí),要求轉(zhuǎn)向輪反應(yīng)靈敏,轉(zhuǎn)向器角傳動(dòng)比應(yīng)當(dāng)小些。汽車高速直線行駛時(shí),轉(zhuǎn)向盤在中間位置的轉(zhuǎn)向器角傳動(dòng)比不宜過小。否則轉(zhuǎn)向過分敏感,使駕駛員精確控制轉(zhuǎn)向輪的運(yùn)動(dòng)有困難。
轉(zhuǎn)向器角傳動(dòng)比變化曲線應(yīng)選用大致呈中間小兩端大些的下凹形曲線,如圖2.1[3]所示。其中橫軸為轉(zhuǎn)向輪轉(zhuǎn)角,縱軸為轉(zhuǎn)向角傳動(dòng)比。
圖2.1 轉(zhuǎn)向器角傳動(dòng)比變化特性曲線
2.5 轉(zhuǎn)向器傳動(dòng)副的傳動(dòng)間隙
傳動(dòng)間隙是指各種轉(zhuǎn)向器中傳動(dòng)副之間的間隙。該間隙隨轉(zhuǎn)向盤轉(zhuǎn)角的大小不同而改變,并把這種變化關(guān)系稱為轉(zhuǎn)向器傳動(dòng)副傳動(dòng)間隙特性(圖2.2)。
研究該特性的意義在于它與直線行駛的穩(wěn)定性和轉(zhuǎn)向器的使用壽命有關(guān)。
傳動(dòng)副的傳動(dòng)間隙在轉(zhuǎn)向盤處于中間及其附近位置時(shí)要極小,最好無間隙。若轉(zhuǎn)向器傳動(dòng)副存在傳動(dòng)間隙,一旦轉(zhuǎn)向輪受到側(cè)向力作用,車輪將偏離原行駛位置,使汽車失去穩(wěn)定。
傳動(dòng)副在中間及其附近位置因使用頻繁,磨損速度要比兩端快。在中間附近位置因磨損造成的間隙過大時(shí),必須經(jīng)調(diào)整消除該處間隙。
圖2.2 轉(zhuǎn)向器傳動(dòng)副傳動(dòng)間隙
轉(zhuǎn)向器傳動(dòng)副傳動(dòng)間隙特性 圖中曲線1表明轉(zhuǎn)向器在磨損前的間隙變化特性;曲線2表明使用并磨損后的間隙變化特性,并且在中間位置處已出現(xiàn)較大間隙;曲線3表明調(diào)整后并消除中間位置處間隙的轉(zhuǎn)向器傳動(dòng)間隙變化特性。
3 機(jī)械式轉(zhuǎn)向器總體方案初步設(shè)計(jì)
3.1 轉(zhuǎn)向器的分類及設(shè)計(jì)選擇
轉(zhuǎn)向器是轉(zhuǎn)向系中的重要部分,其主要作用有三個(gè)方面:一是增大來自轉(zhuǎn)向盤的轉(zhuǎn)矩,使之達(dá)到足以克服轉(zhuǎn)向輪與地面之間的轉(zhuǎn)向阻力矩;二是減低轉(zhuǎn)向傳動(dòng)軸的轉(zhuǎn)速,并帶動(dòng)搖臂軸移動(dòng)使其達(dá)到所需要的位置;三是使轉(zhuǎn)向盤的轉(zhuǎn)動(dòng)方向與轉(zhuǎn)向輪轉(zhuǎn)動(dòng)方向協(xié)調(diào)一致。
按照轉(zhuǎn)向能源不同,可以將汽車轉(zhuǎn)向系統(tǒng)分為機(jī)械轉(zhuǎn)向系統(tǒng)和動(dòng)力轉(zhuǎn)向系統(tǒng)兩大類。根據(jù)機(jī)械轉(zhuǎn)向器的結(jié)果特點(diǎn),可分為齒輪齒條式轉(zhuǎn)向器、循環(huán)球式轉(zhuǎn)向器、蝸桿滾輪式轉(zhuǎn)向器和蝸桿指銷式轉(zhuǎn)向器等。
齒輪齒條式轉(zhuǎn)向器的齒輪齒條直接嚙合,可安裝助力機(jī)構(gòu)。齒輪齒條式轉(zhuǎn)向器的正逆效率都很高,屬于可逆式轉(zhuǎn)向器。其自動(dòng)回正能力強(qiáng)。齒輪齒條式轉(zhuǎn)向器結(jié)構(gòu)簡(jiǎn)單(不需要轉(zhuǎn)向搖臂和橫拉桿等)、加工方便、工作可靠、使用壽命長(zhǎng)、用需要調(diào)整齒輪齒條的間隙。
循環(huán)球式轉(zhuǎn)向器的第一級(jí)傳動(dòng)副是螺桿螺母?jìng)鲃?dòng)副。第二級(jí)是齒條齒扇傳動(dòng)副或滑塊曲柄銷傳動(dòng)副。循環(huán)球式轉(zhuǎn)向器的正效率很高(最高可達(dá)90%~95%)[4],操作輕便,使用壽命長(zhǎng)。但逆向效率也較高,可將地面對(duì)轉(zhuǎn)向輪的沖擊傳給轉(zhuǎn)向盤。
指銷式轉(zhuǎn)向器的傳動(dòng)副以轉(zhuǎn)向蝸桿為主動(dòng)件,裝在搖臂軸曲柄端的指銷為從動(dòng)件。轉(zhuǎn)向蝸桿轉(zhuǎn)動(dòng)時(shí),與之嚙合的指指銷即繞轉(zhuǎn)向搖臂軸軸線沿圓弧線運(yùn)動(dòng),并帶動(dòng)轉(zhuǎn)向搖臂轉(zhuǎn)動(dòng)。
對(duì)轉(zhuǎn)向其結(jié)構(gòu)形式的選擇,主要是根據(jù)汽車的類型、前軸負(fù)荷、使用條件等來決定,并要考慮其效率特性、角傳動(dòng)比變化特性等對(duì)使用條件的適應(yīng)性以及轉(zhuǎn)向器的其他性能、壽命、制造工藝等。中、小型轎車以及前軸負(fù)荷小于1.2t的客車、貨車,多采用齒輪齒條式轉(zhuǎn)向器。齒輪齒條式轉(zhuǎn)向器安裝助力機(jī)構(gòu)方便且轉(zhuǎn)向器結(jié)構(gòu)簡(jiǎn)單,適合于轎車。故本設(shè)計(jì)選用齒輪齒條式轉(zhuǎn)向器。
3.2 齒輪齒條式轉(zhuǎn)向器的基本設(shè)計(jì)
3.2.1 齒輪齒條式轉(zhuǎn)向器的結(jié)構(gòu)選擇
1、輸入輸出形式選擇
根據(jù)輸入齒輪位置和輸出特點(diǎn)不同,齒輪齒條式轉(zhuǎn)向器有四種形式[3]:中間輸入,兩端輸出(圖3-1a);側(cè)面輸入,兩端輸出(圖3-1b);側(cè)面輸入,中間輸出(圖3-1c);側(cè)面輸入,一端輸出(圖3-1d)
圖3.1 齒輪齒條式轉(zhuǎn)向器的四種形式
采用側(cè)面輸入,中間輸出方案時(shí),與齒條相連的左、右拉桿延伸到接近汽車縱向?qū)ΨQ平面附近。由于拉桿長(zhǎng)度增加,車輪上、下跳動(dòng)時(shí)拉桿擺角減小,有利于減少車輪上、下跳動(dòng)時(shí)轉(zhuǎn)向系與懸架系的運(yùn)動(dòng)干涉。拉桿與齒條用螺栓固定連接,因此,兩拉桿會(huì)與齒條同時(shí)向左或右移動(dòng),為此在轉(zhuǎn)向器殼體上開有軸向的長(zhǎng)槽,從而降低了它的強(qiáng)度。
采用兩端輸出方案時(shí),由于轉(zhuǎn)向拉桿長(zhǎng)度受到限制,容易與懸架系統(tǒng)導(dǎo)向機(jī)構(gòu)產(chǎn)生運(yùn)動(dòng)干涉。但其結(jié)構(gòu)簡(jiǎn)單,節(jié)省材料的同時(shí)對(duì)轉(zhuǎn)向精度較中間輸出形式高。現(xiàn)代轎車一般使用兩端輸出形式。側(cè)面輸入,一端輸出的齒輪齒條式轉(zhuǎn)向器,常用在平頭貨車上。
本設(shè)計(jì)采用的是側(cè)面輸入 兩端輸出式齒輪齒條轉(zhuǎn)向器方案。
2、齒輪形式選擇
采用齒輪齒條式轉(zhuǎn)向器采用直齒圓柱齒輪與直齒齒條嚙合,則運(yùn)轉(zhuǎn)平穩(wěn)降低,沖擊大,工作噪聲增加。此外,齒輪軸線與齒條軸線之間的夾角只能是直角,為此因與總體布置不適應(yīng)而遭淘汰。采用斜齒圓柱齒輪與斜齒齒條嚙合的齒輪齒條式轉(zhuǎn)向器,重合度增加,運(yùn)轉(zhuǎn)平穩(wěn),沖擊與工作噪聲均下降,而且齒輪軸線與齒條軸線之間的夾角易于滿足總體設(shè)計(jì)的要求。因?yàn)樾饼X工作時(shí)有軸向力作用,所以轉(zhuǎn)向器應(yīng)該采用角接觸球軸承,使軸承壽命降低,還有斜齒輪的滑磨比較大是它的缺點(diǎn)。
本設(shè)計(jì)采用斜齒輪式方案。
3、齒條形式選擇
齒條斷面形狀有圓形、V形和Y形三種。圓形斷面齒條的制作工藝比較簡(jiǎn)單。V形和Y形斷面齒條與圓形斷面比較,消耗的材料少,約節(jié)省20%,故質(zhì)量??;位于齒下面的兩斜面與齒條托座接觸,可用來防止齒條繞軸線轉(zhuǎn)動(dòng);Y形斷面齒條的齒寬可以做得寬些,因而強(qiáng)度得到增加。在齒條與托座之間通常裝有用減磨材料(如聚四氟乙烯)做的墊片,以減少滑動(dòng)摩擦。當(dāng)車輪跳動(dòng)、轉(zhuǎn)向或轉(zhuǎn)向器工作時(shí),如在齒條上作用有能使齒條旋轉(zhuǎn)的力矩時(shí),應(yīng)選用V形和Y形斷面齒條,用來防止因齒條旋轉(zhuǎn)而破壞齒輪、齒條的齒不能正確嚙合的情況出現(xiàn)。
本設(shè)計(jì)采用圓形端面齒條。
3.2.2 齒輪齒條式轉(zhuǎn)向器的布置形式
根據(jù)齒輪齒條式轉(zhuǎn)向器和轉(zhuǎn)向梯形相對(duì)前軸位置的不同,在汽車上有四種布置形式:
1、轉(zhuǎn)向器位于前軸后方,后置梯形(圖3-3a);
2、轉(zhuǎn)向器位于前軸后方,前置梯形(圖3-3b);
3、轉(zhuǎn)向器位于前軸前方,后置梯形(圖3-3c);
4、轉(zhuǎn)向器位于前軸前方,前置梯形(圖3-3d)。
圖3.2 齒輪齒條式轉(zhuǎn)向器的四種布置形式
現(xiàn)階段大多數(shù)轎車都采用第一種布置方式:轉(zhuǎn)向器位于前軸后方,后置梯形,本設(shè)計(jì)也采用轉(zhuǎn)向器位于前軸后方,后置梯形的布置方式。
3.2.3 設(shè)計(jì)目標(biāo)參數(shù)表以及對(duì)應(yīng)的轉(zhuǎn)向輪偏角計(jì)算
1、設(shè)計(jì)目標(biāo)參數(shù)表如表 3.1所示(本設(shè)計(jì)只是采取其參數(shù)用于設(shè)計(jì)機(jī)械式轉(zhuǎn)向器,實(shí)際上本田雅閣2012款已配備EPS電動(dòng)助力轉(zhuǎn)向系統(tǒng))
表3.1本田雅閣2012款2.0MT 汽車轉(zhuǎn)向參數(shù)
輪距(前/后)
1590mm/1585mm
軸距
2800mm
整備質(zhì)量
1450kg
滿載軸荷分配:前/后
950/850(kg)
輪胎
215/60 R16
主銷偏移距a
100mm
輪胎壓力p/Mpa
0.24Mpa
方向盤直徑
380mm
2、轉(zhuǎn)向輪側(cè)偏角計(jì)算
轉(zhuǎn)向系統(tǒng)的性能從整車機(jī)動(dòng)性著手,在最大轉(zhuǎn)角時(shí)的最小轉(zhuǎn)彎半徑為軸距的2-2.5倍。此輕型車的軸距為2800mm,因此其半徑在5.6-7.0m,并盡量取小值以保證良好的機(jī)動(dòng)性,最小轉(zhuǎn)彎半徑R取6.2m 。
據(jù)此,由圖3.3得轉(zhuǎn)向輪外輪最大轉(zhuǎn)角
(3.1)
式中a為主銷偏移距,通常乘用車的a值在0.4—0.6倍輪胎的胎面寬度尺寸范圍內(nèi)選取,而貨車a值在40mm—60mm范圍內(nèi)選取[4],本設(shè)計(jì)為中型轎車,選取主銷偏距為100mm
L為汽車軸距。本設(shè)計(jì)軸距為L(zhǎng)=2800
圖3.3轉(zhuǎn)角圖
可以得到外輪最大轉(zhuǎn)角
(3.2)
于是得轉(zhuǎn)向輪內(nèi)輪轉(zhuǎn)角
3.2.4 轉(zhuǎn)向器參數(shù)選取與計(jì)算
齒輪齒條轉(zhuǎn)向器的齒輪多數(shù)采用斜齒輪。按照汽車設(shè)計(jì)課程設(shè)計(jì)指導(dǎo)書[4]所指,齒輪模數(shù)多在之間,主動(dòng)小齒輪齒數(shù)多數(shù)在個(gè)齒范圍變化,壓力角取,齒輪螺旋角的取值范圍多為。齒條齒數(shù)應(yīng)根據(jù)轉(zhuǎn)向輪達(dá)到最大偏轉(zhuǎn)角時(shí),相應(yīng)的齒條移動(dòng)行程應(yīng)達(dá)到的值來確定。變速比的齒輪壓力角,對(duì)現(xiàn)有結(jié)構(gòu)在范圍內(nèi)變化。此外,設(shè)計(jì)時(shí)應(yīng)驗(yàn)算齒輪的抗彎強(qiáng)度和接觸強(qiáng)度 。
正確嚙合條件:;;
根據(jù)設(shè)計(jì)的要求,齒輪齒條的主要參數(shù)見表3.2。
表3.2 齒輪齒條的主要參數(shù)
名稱
齒輪
齒條
齒數(shù)Z
7
31
模數(shù)Mn
2.5
2.5
壓力角
螺旋角
β1=
β2=-
變位系數(shù)Xn
0.65
0
轉(zhuǎn)向時(shí)需要克服的阻力,包括轉(zhuǎn)向輪繞主銷轉(zhuǎn)動(dòng)的阻力、轉(zhuǎn)向輪穩(wěn)定阻力(即轉(zhuǎn)向輪的回正力矩)、輪胎變形阻力以及轉(zhuǎn)向系中的內(nèi)摩擦阻力矩。通常用以下的經(jīng)驗(yàn)公式來計(jì)算汽車在瀝青或混泥土路面上的原地轉(zhuǎn)向阻力矩MR(N·mm)。
輪胎上的原地轉(zhuǎn)動(dòng)的阻力矩由經(jīng)驗(yàn)公式得:
(3.3)
式中,f—輪胎和路面間的滑動(dòng)摩擦因素,一般取0.7[3];
G1—為轉(zhuǎn)向軸負(fù)荷(N);取前軸滿載950Kg;
p—為輪胎氣壓(MPa)。取0.24MPa;
所以 MR = 441018.3 N·mm。
方向盤轉(zhuǎn)動(dòng)圈數(shù):
(3.4)
其中為初選傳動(dòng)比。
方向盤上的操縱載荷力:
(3.5)
作用在轉(zhuǎn)向盤上的操縱載荷對(duì)轎車該力不應(yīng)超過50~100N,對(duì)貨車不應(yīng)超過250N[3]。所以符合設(shè)計(jì)要求
因?yàn)樗宰饔迷谵D(zhuǎn)向盤上的力矩為
(3.6)
力傳動(dòng)比:
(3.7)
取齒寬系數(shù)
(3.8)
齒條寬度圓整取。則取齒輪齒寬
根據(jù)轉(zhuǎn)向器本身結(jié)構(gòu)特點(diǎn)以及中心距的要求,應(yīng)合理選取齒輪軸的變位系數(shù)。對(duì)于齒輪齒條轉(zhuǎn)向器中齒輪齒條結(jié)構(gòu)特點(diǎn),齒輪一般都采用斜齒輪,對(duì)于變位齒輪,為了避免齒頂過薄,而又能滿足齒輪嚙合的要求,一般齒輪的齒頂高系數(shù)取偏小值。
據(jù)此,初步選定齒輪和齒條齒頂高系數(shù);頂隙系數(shù);齒輪的變位系數(shù)。其基本參數(shù)如表3.3所示。
表3.3 齒輪齒條基本參數(shù)
名稱
符號(hào)
公式
齒輪
齒條
齒數(shù)
7
31
分度圓直徑
17.768
—
變位系數(shù)
—
0.65
—
齒頂高
4.125
2.5
齒根高
1.5
3.125
齒頂圓直徑
26.021
—
齒根圓直徑
14.772
—
齒輪中圓直徑
21.023
—
螺旋角
—
12°(右旋)
12°
齒寬
32
22
3.2.5 齒輪軸的結(jié)構(gòu)設(shè)計(jì)
本設(shè)計(jì)根據(jù)齒輪的尺寸,設(shè)計(jì)成齒輪軸形式,如圖3.4所示。因?yàn)楸驹O(shè)計(jì)采用斜齒輪結(jié)構(gòu),在傳動(dòng)的時(shí)候有軸向力存在。所以軸承方面選取角接觸球軸承,齒輪軸與轉(zhuǎn)向軸之間用萬向節(jié)連接,所以齒輪軸軸端設(shè)計(jì)花鍵。
圖3.4 齒輪軸結(jié)構(gòu)
3.2.6 轉(zhuǎn)向器材料及其他零件選擇
1、齒輪齒條材料選擇
小齒輪:齒輪通常選用國(guó)內(nèi)常用、性能優(yōu)良的20CrMnTi合金鋼,熱處理采用表面滲碳淬火工藝,齒面硬度為HRC58~63。而齒條選用與20CrMnTi具有較好匹配性的40Cr作為嚙合副,齒條熱處理采用高頻淬火工藝,表面硬度HRC50~56。
2、軸承的選擇
軸承1:角接觸球軸承7004C (GB/T292-1994)
軸承2:角接觸球軸承 7001C (GB/T292-1994)
3、 轉(zhuǎn)向器的潤(rùn)滑方式和密封類型的選擇
轉(zhuǎn)向器的潤(rùn)滑方式:人工定期潤(rùn)滑
潤(rùn)滑脂:石墨鈣基潤(rùn)滑脂(ZBE36002-88)中的ZG-S潤(rùn)滑脂。
密封件: 旋轉(zhuǎn)軸唇形密封圈 FB 16 30 GB 13871—1992
4 齒輪齒條轉(zhuǎn)向器數(shù)據(jù)校核
4.1 齒條的強(qiáng)度計(jì)算
4.1.1 齒條受力分析
在本設(shè)計(jì)中,根據(jù)式3.6得轉(zhuǎn)向器輸入端施加的扭矩 T = 24.5Nm,齒輪傳動(dòng)一般均加以潤(rùn)滑,嚙合齒輪間的摩擦力通常很小,計(jì)算輪齒受力時(shí),可不予考慮。
齒輪齒條的受力狀況類似于斜齒輪,齒條的受力分析如圖4.1
圖4.1齒條的受力分析
如圖4.1,作用于齒條齒面上的法向力Fn,垂直于齒面,將Fn分解成沿齒條徑向的分力(徑向力)Fr,沿齒輪周向的分力(切向力)Ft,沿齒輪軸向的分力(軸向力)Fx 。各力的大小為:
Ft= (4.1)
Fr= (4.2)
Fx= (4.3)
Fn = (4.4)
式中——齒輪軸分度圓螺旋角;——法面壓力角。
齒輪軸受到的切向力:
Ft = =2757.5 N
式中T——作用在輸入軸上的扭矩,T為24.5Nm;d——齒輪軸分度圓的直徑。
齒條齒面的法向力:
Fn= =2966N
齒條齒部受到的切向力:
=2786.4N (4.5)
4.1.2 齒條齒部彎曲強(qiáng)度的計(jì)算
齒條的單齒彎曲應(yīng)力:
(4.6)
式中: ——齒條齒面切向力;
b—— 危險(xiǎn)截面處沿齒長(zhǎng)方向齒寬;
——齒條計(jì)算齒高 ;
S ——危險(xiǎn)截面齒厚;
從上面條件可以計(jì)算出齒條齒根彎曲應(yīng)力:
=549N/mm (4.7)
上式計(jì)算中只按嚙合的情況計(jì)算的,即所有外力都作用在一個(gè)齒上了,實(shí)際上齒輪齒條的總重合系數(shù)是2.63(理論計(jì)算值),在嚙合過程中至少有2對(duì)齒同時(shí)嚙合,因此每個(gè)齒的彎曲應(yīng)力應(yīng)分別降低一倍[5],則
= 275N/mm (4.8)
齒條的材料是40Cr制造,因此:
抗拉強(qiáng)度 735N/mm (沒有考慮熱處理對(duì)強(qiáng)度的影響)。
齒部彎曲安全系數(shù)
S = / =2.75 (4.9)
因此,齒條設(shè)計(jì)滿足彎曲疲勞強(qiáng)度設(shè)計(jì)要求。又滿足了齒面接觸強(qiáng)度,符合本次設(shè)計(jì)的具體要求。
4.2 小齒輪的強(qiáng)度計(jì)算
4.2.1 齒面接觸疲勞強(qiáng)度計(jì)算
計(jì)算斜齒圓柱齒輪傳動(dòng)的接觸應(yīng)力時(shí),推導(dǎo)計(jì)算公式的出發(fā)點(diǎn)和直齒圓柱齒輪相似,但要考慮其以下特點(diǎn):嚙合的接觸線是傾斜的,有利于提高接觸強(qiáng)度;重合度大,傳動(dòng)平穩(wěn)。
1、齒輪的計(jì)算載荷
為了便于分析計(jì)算,通常取沿齒面接觸線單位長(zhǎng)度上所受的載荷進(jìn)行計(jì)算。沿齒面接觸線單位長(zhǎng)度上的平均載荷P(單位為N/mm)為
P = (4.10)
式中Fn ——作用在齒面接觸線上的法向載荷;
L ——沿齒面的接觸線長(zhǎng),單位mm。
法向載荷Fn 為公稱載荷,在實(shí)際傳動(dòng)中,由于齒輪的制造誤差,特別是基節(jié)誤差和齒形誤差的影響,會(huì)使法面載荷增大。此外,在同時(shí)嚙合的齒對(duì)間,載荷的分配不是均勻的,即使在一對(duì)齒上,載荷也不可能沿接觸線均勻分布。因此在計(jì)算載荷的強(qiáng)度時(shí),應(yīng)按接觸線單位長(zhǎng)度上的最大載荷,即計(jì)算Pca (單位N/mm)進(jìn)行計(jì)算。即
Pca=KP=K (4.11)
式中K——載荷系數(shù)。
載荷系數(shù)K包括:使用系數(shù),動(dòng)載系數(shù),齒間載荷分配系數(shù)及齒向載荷分布數(shù),即
K= (4.12)
使用系數(shù)是考慮齒輪嚙合時(shí)外部裝置引起的附加動(dòng)載荷影響的系數(shù),
=1.0;動(dòng)載系數(shù),齒輪傳動(dòng)制造和裝配誤差是不可避免的,齒輪受載后還要發(fā)生彈性變形,因此引入了動(dòng)載系數(shù),=1.0,齒間載荷系數(shù),齒輪的制造精度7級(jí)精度, =1.2。
齒向荷分配系數(shù),齒寬系數(shù)為
φd = = 22/17.77 = 1.24 (4.13)
=1.12+0.18(1+0.6φd) + 0.2310b=1.5 (4.14)
所以載荷系數(shù) K== 111.21.5 =1.8
斜齒輪傳動(dòng)的端面重合度
= bsin= 1.65 (4.15)
在斜齒輪傳動(dòng)中齒輪的單位長(zhǎng)度受力和接觸長(zhǎng)度為:
Pca = KP =K
因?yàn)? (4.16)
Fn =
所以 (4.17)
=1.82757.5/22/1.65/0.67= 204.9N/mm
可以認(rèn)為一對(duì)斜齒圓柱齒輪嚙合相當(dāng)于它們的當(dāng)量直齒輪嚙合,利用赫茲公式,代入當(dāng)量直齒輪的有關(guān)參數(shù)后,得到斜齒圓柱齒輪的齒面接觸疲勞強(qiáng)度校核公式[5] :
(4.18)
=
式中:
Z -彈性系數(shù)
(4.19)
主動(dòng)小齒輪選用材料20CrMnTi合金鋼制造,根據(jù)材料選取,均為0.28, E,E都為合金鋼 ,取189.8 MPa
-節(jié)點(diǎn)區(qū)域系數(shù)
(4.20)
可根據(jù)螺旋角查得,Z = 2.44。
齒輪與齒條的傳動(dòng)比 u , u趨近于無窮
(4.21)
所以 = 56.2 MPa
小齒輪接觸疲勞強(qiáng)度極限 = 1000 MPa,應(yīng)力循環(huán)次數(shù)N = 210,所以 = 1.1。
取失效概率為1%,安全系數(shù)S = 1,可得計(jì)算接觸疲勞許用應(yīng)力
= 1.11000MPa = 1100MPa (4.22)
式中K ——接觸疲勞壽命系數(shù)
由此可得 <
所以,齒輪所選的參數(shù)滿足齒輪設(shè)計(jì)的齒面接觸疲勞強(qiáng)度要求。
4.2.2 齒輪齒根彎曲疲勞強(qiáng)度計(jì)算
齒輪受載時(shí),齒根所受的彎矩最大,因此齒根處的彎曲疲勞強(qiáng)度最弱。當(dāng)齒輪在齒頂處嚙合時(shí),處于雙對(duì)齒嚙合區(qū),此時(shí)彎矩的力臂最大,但力并不是最大,因此彎矩不是最大。根據(jù)分析,齒根所受的最大彎矩發(fā)生在輪齒嚙合點(diǎn)位于單對(duì)齒嚙合最高點(diǎn)時(shí)。因此,齒根彎曲強(qiáng)度也應(yīng)按載荷作用于單對(duì)齒嚙合區(qū)最高點(diǎn)來計(jì)算[10]。
斜齒輪嚙合過程中,接觸線和危險(xiǎn)截面位置在不斷的變化,要精確計(jì)算其齒根應(yīng)力是很難的,只能近似的按法面上的當(dāng)量直齒圓柱齒輪來計(jì)算其齒根應(yīng)力。
將當(dāng)量齒輪的有關(guān)參數(shù)代入直齒圓柱齒輪的彎曲強(qiáng)度計(jì)算公式,考慮螺旋角使接觸線傾斜對(duì)彎曲強(qiáng)度有利的影響而引入螺旋角系數(shù),可得到斜齒圓柱齒輪的彎曲疲勞強(qiáng)度計(jì)算校核公式[5]:
(4.23)
齒間載荷分配系數(shù)= 1.2;齒向載荷分配系數(shù) = 1.33;載荷系數(shù)K= = 111.21.3 =1.56;齒形系數(shù) ;校正系數(shù) = 1.4;螺旋角系數(shù),查得[5]。
校核齒根彎曲強(qiáng)度
σ= (4.24)
求得 σ= =231.68 MPa
彎曲強(qiáng)度最小安全系數(shù),=1.5;彎曲疲勞許用應(yīng)力為
(4.25)
——彎曲疲勞壽命系數(shù),= 1.5。
可得, = 1.51000/1.5 = 1000 MPa。
所以 σ <。
因此,本次設(shè)計(jì)及滿足了小齒輪的齒面接觸疲勞強(qiáng)度又滿足了小齒輪的彎曲疲勞強(qiáng)度,符合設(shè)計(jì)要求。
綜上所述,齒輪設(shè)計(jì)滿足設(shè)計(jì)的強(qiáng)度要求。
4. 3 齒輪軸強(qiáng)度校核
1.軸的受力分析
若略去齒面間的摩擦力,則作用于節(jié)點(diǎn)P的法向力Fn可分解為徑向力Fr和分力F,分力F又可分解為圓周力Ft和軸向力Fa。
=2×24.5Nm/17.7=2757.53;
=308.62;
=184.07N
(1) 畫軸的受力簡(jiǎn)圖
圖4.2 軸的受力簡(jiǎn)圖
(2) 計(jì)算支承反力
在垂直面上
(4.26)
(4.27)
在水平面上
(3) 畫彎矩圖(見圖5.3)
在水平面上,a-a剖面左側(cè)、右側(cè)
(4.28)
在垂直面上,a-a剖面左側(cè)
(4.29)
a-a剖面右側(cè)
(4.30)
合成彎矩,a-a剖面左側(cè)
(4.31)
a-a剖面右側(cè)
(4.32)
(4) 畫轉(zhuǎn)矩圖(見圖5.3)
轉(zhuǎn)矩 =2757.53×17.77/2=24500.65 (4.33)
2.判斷危險(xiǎn)剖面
顯然,a-a截面左側(cè)合成彎矩最大、扭矩為T,該截面左側(cè)可能是危險(xiǎn)剖面。
3.軸的彎扭合成強(qiáng)度校核
由《機(jī)械設(shè)計(jì)》[4]查得,,
=60/100=0.6。
a-a截面左側(cè)
(4.34)
(4.35)
4.軸的疲勞強(qiáng)度安全系數(shù)校核
查得, ,,
a-a截面左側(cè)
(4.36)
查得;查得[5]絕對(duì)尺寸系數(shù)軸經(jīng)磨削加工,查得質(zhì)量系數(shù)β=1.0。則
彎曲應(yīng)力 (4.37)
應(yīng)力幅 (4.38)
平均應(yīng)力
切應(yīng)力
安全系數(shù)
(4.39)
(4.40)
(4.41)
查得[4]許用安全系數(shù)[S]=1.3~1.5,顯然S>[S],故a-a剖面安全
圖5.3 軸的受力分析圖
5 轉(zhuǎn)向梯形機(jī)構(gòu)的設(shè)計(jì)
5.1 轉(zhuǎn)向梯形機(jī)構(gòu)概述
轉(zhuǎn)向梯形機(jī)構(gòu)用來保證轉(zhuǎn)彎行駛時(shí)汽車的車輪均能繞同一瞬時(shí)轉(zhuǎn)向中心在不同半徑的圓周上作無滑動(dòng)的純滾動(dòng)。同時(shí),為了達(dá)到總體布置要求的最小轉(zhuǎn)彎直徑值,轉(zhuǎn)向輪應(yīng)有足夠大的轉(zhuǎn)角。為此,轉(zhuǎn)向梯形應(yīng)保證內(nèi)、外轉(zhuǎn)向車輪的理想轉(zhuǎn)角關(guān)系。轉(zhuǎn)向梯形有整體式和斷開式兩種,選擇整體式或斷開式轉(zhuǎn)向梯形方案與懸架采用何種方案有聯(lián)系。無論采用哪一種方案,必須正確選擇轉(zhuǎn)向梯形參數(shù),做到汽車轉(zhuǎn)彎時(shí),保證全部車輪繞一個(gè)瞬時(shí)轉(zhuǎn)向中心行駛,使在不同圓周上運(yùn)動(dòng)的車輪,作無滑動(dòng)的純滾動(dòng)運(yùn)動(dòng)。同時(shí),為達(dá)到總體布置要求的最小轉(zhuǎn)彎直徑值,轉(zhuǎn)向輪應(yīng)有足夠大的轉(zhuǎn)角[3]。
車輛在轉(zhuǎn)向過程中,如果轉(zhuǎn)向前輪的偏轉(zhuǎn)角相同,將使前后橋車輪的瞬間轉(zhuǎn)向中心不一致,車輪將產(chǎn)生側(cè)滑,結(jié)果造成輪胎磨損量增加,行駛阻力變大,轉(zhuǎn)向困難。 要使轉(zhuǎn)向順利,車輪在地面純滾動(dòng)而不產(chǎn)生側(cè)偏,必須使所有車輪繞同一瞬時(shí)轉(zhuǎn)動(dòng)中心滾動(dòng)即所謂的阿克曼(Ackerman)理論轉(zhuǎn)向特性[14]。如圖5.1所示的兩軸汽車為例,阿克曼理論轉(zhuǎn)向特性,是以汽車前輪定位角都等于零、 行走系統(tǒng)為剛性、 汽車行駛過程中無側(cè)向力為假設(shè)條件的。
圖 5.1
本設(shè)計(jì)采用的是整體式的轉(zhuǎn)向梯形結(jié)構(gòu)。下文將以整體式轉(zhuǎn)向梯形機(jī)構(gòu)展開分析,計(jì)算以及用計(jì)算機(jī)軟件MATLAB對(duì)其進(jìn)行設(shè)計(jì)并驗(yàn)算。
5.2 整體式轉(zhuǎn)向梯形機(jī)構(gòu)方案分析
整體式轉(zhuǎn)向梯形是由轉(zhuǎn)向橫拉桿l,轉(zhuǎn)向梯形臂2和汽車前軸3組成,如圖5.2所示。其中梯形臂呈收縮狀向后延伸。這種方案的優(yōu)點(diǎn)是結(jié)構(gòu)簡(jiǎn)單,汽車前束調(diào)整容易,制造成本低;主要缺點(diǎn)是一側(cè)轉(zhuǎn)向輪上、下跳動(dòng)時(shí),會(huì)影響另一側(cè)轉(zhuǎn)向輪。
圖5.2 整體式轉(zhuǎn)向梯形
1—轉(zhuǎn)向橫拉桿 2—轉(zhuǎn)向梯形臂 3—前軸
當(dāng)汽車前懸架采用非獨(dú)立懸架時(shí),應(yīng)當(dāng)采用整體式轉(zhuǎn)向梯形。整體式轉(zhuǎn)向梯形的橫拉桿可位于前軸后或前軸前(稱為前置梯形)。對(duì)于發(fā)動(dòng)機(jī)位置低或前輪驅(qū)動(dòng)汽車,常采用前置梯形。前置梯形的梯形臂必須向前外側(cè)方向延伸,因而會(huì)與車輪或制動(dòng)底板發(fā)生干涉,所以在布置上有困難。為了保護(hù)橫拉桿免遭路面不平物的損傷,橫拉桿的位置應(yīng)盡可能布置得高些,至少不低于前軸高度[13]。
5.3 整體式轉(zhuǎn)向梯形機(jī)構(gòu)數(shù)學(xué)模型分析
汽車轉(zhuǎn)向行駛時(shí),受彈性輪胎側(cè)偏角的影響,所有車輪不是繞位于后軸沿長(zhǎng)線上的點(diǎn)滾動(dòng),而是繞位于前軸和后軸之間的汽車內(nèi)側(cè)某一點(diǎn)滾動(dòng)。此點(diǎn)位置與前輪和后輪的側(cè)偏角大小有關(guān)。因影響輪胎側(cè)偏角的因素很多,且難以精確確定,故下面是在忽略側(cè)偏角影響的條件下,分析有關(guān)兩軸汽車的轉(zhuǎn)向問題。此時(shí),兩轉(zhuǎn)向前輪軸線的延長(zhǎng)線應(yīng)交在后軸延長(zhǎng)線上[4],如圖5.3所示。設(shè)θi、θo分別為內(nèi)、外轉(zhuǎn)向車輪轉(zhuǎn)角,L為汽車軸距,K為兩主銷中心線延長(zhǎng)線到地面交點(diǎn)之間的距離。若要保證全部車輪繞一個(gè)瞬時(shí)轉(zhuǎn)向中心行駛,則梯形機(jī)構(gòu)應(yīng)保證內(nèi)、外轉(zhuǎn)向車輪的轉(zhuǎn)角有如下關(guān)系:
(5.1)
圖5.3 理想的內(nèi)、外車輪轉(zhuǎn)角關(guān)系簡(jiǎn)圖
若自變角為θo,則因變角θi的期望值為:
(5.2)
現(xiàn)有轉(zhuǎn)向梯形機(jī)構(gòu)僅能近似滿足上式關(guān)系。以圖5.3所示的后置梯形機(jī)構(gòu)為例,在圖上作輔助用虛線,利用余弦定理可推得轉(zhuǎn)向梯形所給出的實(shí)際因變角為(5.3)式中:m為梯形臂長(zhǎng);γ為梯形底角。
所設(shè)計(jì)的轉(zhuǎn)向梯形給出的實(shí)際因變角,應(yīng)盡可能接近理論上的期望值。其偏差在最常使用的中間位置附近小角范圍內(nèi)應(yīng)盡量小,以減少高速行駛時(shí)輪胎的磨損;而在不經(jīng)常使用且車速較低的最大轉(zhuǎn)角時(shí),可適當(dāng)放寬要求。因此,再引入加權(quán)因子,構(gòu)成評(píng)價(jià)設(shè)計(jì)優(yōu)劣的目標(biāo)函數(shù)為
(5.4)
由以上可得:
(5.5)
式中:x為設(shè)計(jì)變量,;θomax為外轉(zhuǎn)向車輪最大轉(zhuǎn)角,由圖5.2得
(5.6)
式中,Dmin為汽車最小轉(zhuǎn)彎直徑;a為主銷偏移距。
考慮到多數(shù)使用工況下轉(zhuǎn)角θo小于20°,且10°以內(nèi)的小轉(zhuǎn)角使用得更加頻繁,因此?。?
收藏
編號(hào):3955136
類型:共享資源
大小:10.64MB
格式:RAR
上傳時(shí)間:2019-12-25
30
積分
- 關(guān) 鍵 詞:
-
齒輪
齒條
轉(zhuǎn)向器
轉(zhuǎn)向
梯形
設(shè)計(jì)
- 資源描述:
-
齒輪齒條轉(zhuǎn)向器及轉(zhuǎn)向梯形設(shè)計(jì),齒輪,齒條,轉(zhuǎn)向器,轉(zhuǎn)向,梯形,設(shè)計(jì)
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。