2018-2019學年高二數(shù)學上學期期末考試試卷 理 (I).doc
《2018-2019學年高二數(shù)學上學期期末考試試卷 理 (I).doc》由會員分享,可在線閱讀,更多相關(guān)《2018-2019學年高二數(shù)學上學期期末考試試卷 理 (I).doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2018-2019學年高二數(shù)學上學期期末考試試卷 理 (I) 一、選擇題:(本大題共14小題,每小題5分,共70分,在每小題給出的四個選項中,只有一項是滿足題目要求的.) 1.復數(shù)在復平面內(nèi)對應(yīng)的點位于( ) A. 第一象限 B.第二象限 C.第三象限 D.第四象限 2.已知集合 A. B. C. D. 3. 如圖所示是一容量為100的樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),樣本落在[5,10]內(nèi)的頻數(shù)為( ) A.50 B.40 C.30 D.20 4.已知變量與負相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù),,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是( ) 5. 下列命題中正確的個數(shù)是( ) ①命題“任意”的否定是“任意; ②命題“若,則”的逆否命題是真命題; ③若命題為真,命題為真,則命題且為真; ④命題“若,則”的否命題是“若,則”. A.個 B.個 C.個 D.個 6. 曲線在點處的切線方程為( ). A. B. C. D. 7. 由曲線,直線及軸所圍成的平面圖形的面積為( ). A. B.4 C. D.6 8. 已知m,n表示兩條不同直線,表示平面,下列說法正確的是( ) A.若,,則 B.若,,則 C.若則 D.若,,則 9.“”是“”的( ) A.充要條件 B.充分不必要條件 C.必要不充分條件 D.既不充分也不必要條件 10. 在同一直角坐標系中,函數(shù)的圖像可能是( ) 11. 從區(qū)間隨機抽取個數(shù),,…,,,,…,,構(gòu)成n個數(shù)對, ,…,,其中兩數(shù)的平方和小于1的數(shù)對共有個,則用隨機模擬的方法得到的圓周率的近似值為( ) A. B. C. D. 12. 已知是定義域為R的奇函數(shù),滿足.若,則 ( ) A. B.0 C.2 D.xx 13. 如圖,已知雙曲線的左右焦點分別為,,是雙曲線右支上的一點,與軸交于點的內(nèi)切圓在邊上的切點為,若,則雙曲線的離心率是 ( ) A.2 B. C. D.3 14. 已知是定義在區(qū)間內(nèi)的單調(diào)函數(shù),且對任意,都有,設(shè)為的導函數(shù),,則函數(shù)的零點個數(shù)為( ) A.0 B. 1 C. 2 D.3 二.填空題:(本大題共6小題,每小題5分,共30分.請把答案填寫在答題紙的相應(yīng)橫線上.) 15. 一組數(shù)據(jù)的平均數(shù)是28,方差是4,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上20,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)是__________,方差是__________. 16.在的展開式中,的系數(shù)為 . 17.從2位女生,4位男生中選3人參加科技比賽,且至多有1位女生入選,則不同的選法共有________種.(用數(shù)字填寫答案) 18.已知正方體的棱長為1,則以其所有面的中心為頂點的多面體的體積為__________. 19. 某地區(qū)空氣質(zhì)量監(jiān)測資料表明,一天的空氣質(zhì)量為優(yōu)良的概率是0.8,連續(xù)兩天為優(yōu)良 的概率是0.6, 已知某天的空氣質(zhì)量為優(yōu)良,則隨后一天的空氣質(zhì)量為優(yōu)良的概率是________. 20. 設(shè)直線與拋物線相交于A,B兩點,與圓相切于點M,且M為線段AB的中點. 若這樣的直線恰有4條,則r的取值范圍是__________. 三、解答題:(本大題共4小題,共50分.解答應(yīng)寫出文字說明、證明過程或演算步驟.) 21. (本小題滿分12分)某地最近出臺一項機動車駕照考試規(guī)定:每位考試者一年之內(nèi)最多有4次參加考試的機會,一旦某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則就一直考到第4次為止.如果李明決定參加駕照考試,設(shè)他每次參加考試通過的概率依次為0.6, 0.7, 0.8, 0.9. (1)求在一年內(nèi)李明參加駕照考試次數(shù)X的分布列和數(shù)學期望; (2)求李明在一年內(nèi)領(lǐng)到駕照的概率. 22. (本小題滿分12分) 如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3, PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點. (1)證明MN∥平面PAB; (2)求直線AN與平面PMN所成角的正弦值. 23.(本小題滿分12分)已知橢圓C: ()的離心率為 ,,,,的面積為1. (1)求橢圓C的方程; (2)設(shè)為橢圓上一點,直線與軸交于點M,直線PB與軸交于點N. 求證:為定值. 24. (本小題滿分14分)設(shè)函數(shù),其中. (1)討論的單調(diào)性; (2)若在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對數(shù)的底數(shù)),求的取值范圍。 高二數(shù)學(理科)參考答案 一、選擇題:(本大題共14小題,每小題5分,共70分,在每小題給出的四個選項中,只有一項是滿足題目要求的.) 題號 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案 C B D C B B C D C D B B A B 二.填空題:(本大題共6小題,每小題5分,共30分.請把答案填寫在答題紙的相應(yīng)橫線上.) 15. 48, 4 16. 17. 16 18. 19. 0.75 20. 三、解答題:(本大題共4小題,共50分.解答應(yīng)寫出文字說明、證明過程或演算步驟.) 21. 解:(1)X的取值分別為1,2,3,4. X=1,表明李明第一次參加駕照考試就通過了,故P(X=1)=0.6. X=2,表明李明在第一次考試未通過,第二次通過了, 故P(X=2)=(1-0.6)0.7=0.28. X=3,表明李明在第一、二次考試未通過,第三次通過了, 故P(X=3)=(1-0.6)(1-0.7)0.8=0.096. X=4,表明李明第一、二、三次考試都未通過, 故P(X=4)=(1-0.6)(1-0.7)(1-0.8)=0.024. ∴李明實際參加考試次數(shù)X的分布列為 X 1 2 3 4 P 0.6 0.28 0.096 0.024 EX= (2)李明在一年內(nèi)領(lǐng)到駕照的概率為 1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.997 6. 22.解:(Ⅰ)由已知得,取的中點,連接,由為中點知,. 又,故平行且等于,四邊形為平行四邊形,于是. 因為平面,平面,所以平面. (Ⅱ)取的中點,連結(jié),由得,從而,且. 以為坐標原點,的方向為軸正方向,建立如圖所示的空間直角坐標系,由題意知, ,,,, ,,. 設(shè)為平面的法向量,則,即,可取, 于是. 23.解析:(1)由題意得解得.所以橢圓的方程為. (2)由(Ⅰ)知,,設(shè),則. 當時,直線的方程為. 令,得.從而. 直線的方程為. 令,得.從而. 所以 . 當時,, 所以.綜上,為定值. 24. 解: (1) <0,在內(nèi)單調(diào)遞減. 由=0,有. 此時,當時,<0,單調(diào)遞減; 當時,>0,單調(diào)遞增. (2)令=,=. 則=. 而當時,>0,所以在區(qū)間內(nèi)單調(diào)遞增. 又由=0,有>0,從而當時,>0. 當,時,=. 故當>在區(qū)間內(nèi)恒成立時,必有. 當時,>1. 由(I)有,從而, 所以此時>在區(qū)間內(nèi)不恒成立. 當時,令, 當時,, 因此,在區(qū)間單調(diào)遞增. 又因為,所以當時, ,即 恒成立. 綜上,. .- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019學年高二數(shù)學上學期期末考試試卷 I 2018 2019 年高 數(shù)學 上學 期末考試 試卷
鏈接地址:http://www.szxfmmzy.com/p-4274398.html