壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
中文譯文
刮板輸送機減速器在線油潤滑傳感器的發(fā)展
文摘:描述的是在線油污染傳感器被用于監(jiān)測刮板輸送機減速器的N320潤滑劑。這個傳感器可以檢測關于潤滑劑的NAS污染水平和提示更換潤滑油當油污染水平超過L-ckc型工業(yè)封閉齒輪油的指標。本文介紹了傳感器的設計要求,作業(yè)原則,波長選擇,機械結(jié)構(gòu)的選擇設計和測試校準。該傳感器的缺點和相關解決方案也都在文章中被提到。
關鍵詞:同步傳感器,機械結(jié)構(gòu)設計,油污染,傳感器校準,光纖,刮板輸輸送機
一、引言
磨損與潤滑是機械設備故障或重大損害的主要原因。殼牌公司最新的研究數(shù)據(jù)顯示,約35%的運行故障和38.5%的柴油發(fā)動機齒輪故障是由于發(fā)生不當潤滑. 粒子是石油污染的主要來源。在目前,檢測中的應用中使用的油工業(yè),是基于早期的光譜分析和鐵譜分析,并使用脫機的方法,不能滿足要求的現(xiàn)代產(chǎn)業(yè)為狀態(tài)監(jiān)測和故障診斷。因此,要發(fā)展一種在線石油污染探測器,可以提醒操作人員采取過濾設備和更換油時,油污染水平高于規(guī)定的標準。其中方面用光學方法測量多種檢測技術(shù)在石油污染,具有非接觸、實時和在線測量的優(yōu)勢。
二、工作原理
該傳感器的原理是基于光學吸收法。它使用的光纖傳輸介質(zhì),具有許多優(yōu)點,如反干擾、不受溫度和電磁干擾。只有存在于油下設備的正常磨損狀態(tài)的小顆粒,在很短的期的時間大量的出現(xiàn)磨損顆??赡軗p壞設備。因此,在線監(jiān)測濃度和顆粒大小的磨損潤滑劑可以有效地防止故障發(fā)生。石油事業(yè)的性質(zhì)和顆粒在磨損方面分為三類:精神磨損顆粒,既是摩擦的設備和產(chǎn)品的一個重要故障指示;嚴重磨損;非金屬磨損和故障燃燒產(chǎn)生的粒子,在密封和過濾裝置;環(huán)境污染物顆粒,包括空氣,特別是在各種顆粒出現(xiàn)在開放式系統(tǒng),其中的污染水平高,污染物通常存在的氧化物。這些粒子的大小是介于1-40微米,和那些20-30微米有更大的影響設備,而那些低于1微米,沒有影響該設備。因此140微米之間的粒子的大小對傳感器應是最敏感的。在石油的懸浮微粒對石油的光學性能有顯著影響。濁度可用于描述光線影響的粒子透光性質(zhì)的油。連接之間的濁度和污染程度允許此水平為半定量測量確定濁度。圖1顯示了光學原理圖光纖傳感器。從半導體光發(fā)射激光穿過光纖及光纖準直器,然后進入油池。該光子探測器收集和傳播反映和轉(zhuǎn)化,使它們成為電壓, 傳達污染,固體顆粒在油池中的信息。
三、原理
當光線穿過的石油,其中包含污染物,光的一部分,得到分散, 其它吸收。當一束平行單色光的強度,穿過油,其強度, 得到減少到作為一個L函數(shù)的穿透深度,隨著Lambert法律如下:
這是Lambert定律在媒體的數(shù)學表達式,是同質(zhì)被吸收系數(shù)。當介質(zhì)被解決時,其吸收系數(shù)和c成正比:
凡是一個獨立的常數(shù)濃度只有決定的分子特色吸波材料 。我們可以得到以下公式:
這個公式是beer定律的數(shù)學表達式。 假設粒子是懸浮的,在油中分散均勻的粒子散射模型可以被看作是一個二維不透明磁盤。 所有入射光的吸收,衰減系數(shù)可寫為:
其中K是消光系數(shù),表明是一個相對于媒體功能顆粒大小,波長和折射率粒子; N是濃度,D是顆粒直徑,是光粒子面臨的截面積。
總結(jié)上面三個公式,在不同的粒子一個多粒子系統(tǒng),可以得到:
其中m是粒子數(shù)與直徑到周圍介質(zhì)的相對折射率。表示的比例顆粒,頻率的關系重量和粒徑分布表示如下:
從而可以得到這樣的公式單一波長:
從上面兩個公式中我們可以看到單分散粒子系統(tǒng)時滲透深度是固定的,其價值正比于粒子的數(shù)目濃度,從而也正比于粒子的重量濃度,即顆粒的重量濃度可以間接地通過測量和石油污染的程度再這樣來確定。
四、波長選擇
光是光子某些依賴于波長的能量。分子和原子對應不同的能級構(gòu)成物質(zhì)的不同運動模式。當光從油中穿行的時候,油分子吸收這些能量是量子化的水平,這樣的吸收光子可以激發(fā)分子的轉(zhuǎn)動或振動模式,或者電子的能量水平。該波長的光應符合適用的傳感器條件如下:(1)敏感的固體粒子在石油。(2)利用光的吸收率石油仍然基本上保持在附近一帶選定的波長。(3)衰變率應該低當光線穿過油。
一般來說,顆粒之間的5-30微米具有最危險的污染。據(jù)光吸收和散射理論,我們可以看到,吸收和散射的石油是最強的光當粒子的大小比波長的光線大約是10。為了使所選擇的波長光敏感,這些污染物,波長0.5 -5微米應被選中。這種輕波長,透射率曲線,得到了搭配和使用不同類型的油樣340記錄分光光度計,所示圖2。左邊的面板是透光曲線5個油樣之間的波長0.4-1微米而正確的對應1.0-2.2波長微米我們可以從圖中看到的透過率樣本曲線的5個石油,這是同樣的行為決定由石油共同特征。該依賴于波長的透過率顯示該系數(shù)是波長吸收功能。該曲線的出發(fā)點是從每個轉(zhuǎn)移另外,因為不同的顏色和添加劑石油類。我們也可以從圖2中看到的變化率樣品透過率時的五個石油波長介于0.4 -0.7微米大,而波長在0.7 - 0.9微米,透過率是相對穩(wěn)定。范圍0.9 – 1微米之間的波長透光率有明顯的波動。該透過率已在1.2微米和2的吸收峰1.4微米,這是因為石油的共性結(jié)構(gòu),提出和由兩個元素,即碳氫氣。上述分析表明,當波長為0.7-0.9微米之間,透射相對穩(wěn)定和較大,結(jié)合典型轉(zhuǎn)移窗口的光纖,最終光波長的測試是確定為850納米。
五、該傳感器的結(jié)構(gòu)設計
該傳感器主要是用于在線監(jiān)測煤礦石油污染的刮板輸送機減速器。為此,傳感器嵌入在減速器的箱體,為了防止在粒子石油從時間上積累的玻璃擋板可能導致不準確的測量,內(nèi)部玻璃擋板必須定期清理。 該傳感器的機械結(jié)構(gòu)如下:
1-纖維 2-光電探測器線程 3-拉澤 4-法蘭 5-內(nèi)芯 6-外壁上鞘 7-密封套 8-緊固螺母 9-密封環(huán) 10-緊固帶 11-石英玻璃擋板 12-密封圈 13-引線腔14-石英玻璃 15-探測器16-下壁的外觀 17-方向鞘18-內(nèi)芯19-鞘 20-內(nèi)芯
解釋了傳感器的結(jié)構(gòu): 1.該傳感器的主要結(jié)構(gòu)是由內(nèi)核心,外鞘和密封護套; 2.內(nèi)在的核心是由緊固螺栓連接起來四個部分。 石英玻璃擋板構(gòu)成左,右擋油池是安裝在內(nèi)部的核心; 3.外部護套是由上下;外部油可以流過洞池測量外部護套成油。通過在與結(jié)合下壁的外部護套,密封鞘內(nèi)核可以是分開外國的石油,使內(nèi)核可以取出了石英玻璃擋板被清潔。
六、試驗標定
使用顆粒計數(shù)器校準不同油污染的程度是同位根據(jù)該方法重量法。把油到傳感器和測量輸出信號對應于不同程度的石油和信號油點改變。
由于N320潤滑劑廣泛用于減速機重型機器的煤礦,它可以用來作為不同配置的基潤滑劑油污染的程度。目前NAS1638污染標準被廣泛使用。首先,它可以從表1可見,該上限的固體石油污染粒子在百分之0.5。根據(jù)表2,我們也可以看到,重量百分之0.5對應NAS18污染程度。共13種石油與石油從NAS8污染度NAS20是搭配。
NAS1638污染標準完全有14個污染程度由NAS00到NAS12;的比例顆粒濃度水平相鄰的兩個是2。所以當污染水平高于12,外推法可用于決定它的污染水平和機械設備中使用的石油開采遠遠大于NAS12,所以我們可以只使用方法解決這個問題[8]。
表一. L-CKC工業(yè)閉式齒輪油的交換標準(SH/T0586)
項目
交換石油標準
儀表
異常
運動粘度(40 °)的變化率/%>
+15或-20
水分/%
0.5
機械雜質(zhì)/%
0.5
銅片腐蝕(100,3h)/程度大等于
3b
可行值
133.4
表二.重污染標準
污染程度(NAS1638)
12
13
14
15
16
mg/1000ml
50
100
200
400
800
污染程度(NAS1638)
17
18
19
20
mg/1000ml
1600
3200
6400
12800
12800
七、油校準
校準樣品的潤滑油與反粒子重量法搭配并得到了他們準確的污染程度。但校準將有以下問題:
1.該原油粘度用于粒子計數(shù)器應介于10和15,而N320不符合本規(guī)定的粘度
2.上限的測試油污染程度由粒子計數(shù)器是NAS12。這個問題是可以解決的污染低的油,但是這可能會導致高污染程度的油有較大的誤差。
對于問題1,搭配的石油和石油醚按不同比例,用粘度計測量混合物粘度得出結(jié)論,當石油和石油醚滿足3:1的比例,混合粘度符合粒子計數(shù)器的要求。
對于問題2,選擇四個13號污染程度為NAS12,NAS14,NAS16,NAS18的樣本,使用粒子計數(shù)器測量。,如果污染程度粒子計數(shù)器測量是它的標稱水平,同樣它表明,使用粒子計數(shù)器測量的石油搭配的污染與重量法測定一致。否則,如果某些規(guī)則可以被測量結(jié)果證明,其他油樣的實際污染程度可以推測使用這個法則。
從4油樣品的測量結(jié)果,我們可以看到,污染程度由粒子計數(shù)器測量的結(jié)果比重量法搭配的油樣高兩個水平。按照13種潤滑油污染實際水平的法則,可知是從NAS22到NAS10相應的換油點的污染程度是NAS20。
用傳感器衡量搭配使用的油污染。在測量過程中,從半導體激光通過光纖傳播,光纖準直器,油和最后到達該探測器表面。?通過測量光探測器輸出的電壓,我們可以得到從NAS10信息NAS22污染程度,如表3所示。
表三.透光試驗數(shù)據(jù)
NAS污染程度
10
11
12
13
14
15
16
輸出電壓(mv)
402
401
401
401
401
401
400
NAS污染程度
17
18
19
20
21
22
輸出電壓(mv)
398
392
390
368
357
338
338
數(shù)據(jù)分析可以看出從圖4:
1.該探測器的輸出電壓值基本不變,是同一個比較干凈的油。這表明,石油的粒子阻斷光線當油污染程度低于NAS16可以忽略不計的。
2.該探測器的輸出電壓明顯下降時測量上述NAS17油污染程度。這表明,這個污染程度光明顯被阻塞。對不斷變化的油污染的程度的臨界點就是NAS20點,所以時用這點來衡量的。
圖4. 該探測器對應到NAS污染程度的輸出電壓
八、結(jié)論
以上描述了油潤滑的傳感器。測量原理,波長,機械設計特點,試油,傳感器的校準和標定數(shù)據(jù)分析進行了說明。可以從數(shù)據(jù)看到,改變油點是衡量標準它是證明該傳感器能否滿足刮板輸送機齒輪減速器同步油污染檢測的關鍵。不過,該傳感器也有一些缺點,例如,經(jīng)過長期使用油的顏色會改變會影響透光率,導致測量誤差。該測試是在室溫下進行,與實際狀況不符,由于油溫的變化影響了傳輸速率。因此,下一步將是研究如何消除油溫度和顏色的影響,以提高傳感器的精度。
畢業(yè)設計任務書
任務下達日期:20** 年 2 月 28 日
畢業(yè)設計日期: 20** 年 3 月 7 日至 20** 年 6 月 10 日
畢業(yè)設計題目:刮板輸送機
畢業(yè)設計專題題目:
畢業(yè)設計主要內(nèi)容和要求:
設計參數(shù):
生產(chǎn)能力: 450t/h
設計長度: 200m
刮板鏈速度: 1.01m/s
院長簽字: 指導教師簽字:
摘 要
刮板輸送機是一種撓性牽引機構(gòu)的連續(xù)輸送機械,是為采煤工作面和采區(qū)巷道運煤布置的機械。它的牽引機構(gòu)是刮板鏈,承載裝置是中部槽,刮板鏈安裝在中部槽的槽面。中部槽沿運輸路線全線鋪設,刮板鏈繞經(jīng)機頭、機尾的鏈輪接成封閉形置于中部槽中,與滾筒采煤機和輸送機推移裝置配套,實現(xiàn)落煤、裝煤、運煤及推移輸送機械化。沿輸送機全長都可向溜槽中裝煤,裝入中部槽中的煤被刮板鏈拖拉,在中部槽內(nèi)滑行到卸載端卸下。
一般的刮板輸送機能在25°以下的條件下使用。刮板輸送機在使用中要受拉、壓、彎曲、沖擊、摩擦和腐蝕等多種作用,因此,必須有足夠的強度、剛度、耐磨和耐腐蝕性。由于它的運輸方式是物料和刮板鏈都在槽內(nèi)滑行,因此運行阻力和磨損都很大。但是,在采煤工作面運煤,目前還沒有更好的機械可代替,只能從結(jié)構(gòu)上、強度上和制造工藝上不斷研究,使它更加完善、耐用。
刮板輸送機是與大型綜采工作面設備配套使用的液壓支架、采煤機,完成把工作面采煤機采下的煤輸送、轉(zhuǎn)運到后續(xù)運輸設備上的任務,并提供相應的連接手段。本說明書主要介紹了輸送機傳動部的設計計算。SGB630/220型輸送機傳動部主要是由電動機、減速箱和液力耦合器組成,該輸送機內(nèi)橫向布置,電動機輸出的動力經(jīng)由三級圓錐圓柱齒輪的傳動,最后驅(qū)動鏈輪轉(zhuǎn)動。
此外,還對SGB630/220型輸送機的使用與維護進行了說明,以便能更好的發(fā)揮該輸送機的性能,達到最佳工作效果。
關鍵詞:刮板輸送機 ;減速器 ;機頭部 ;機尾部 ;液力耦合器。
ABSTRACT
Scraper Conveyor is a continuous flexible traction transport machinery for mining coal face and Roadway layout of machinery.?It's traction is the scraper chain, carrying equipment in the central trough, scraper chain installed in the central groove of the groove surface.?Central groove along the transportation routes across the board laying around by the nose scraper chain, sprocket tail then placed into a closed-shaped central slot, with the passage of Shearer and conveyor equipment necessary, to achieve loading of coal, coal loading,?over coal and transport mechanization.?Along the full can to the chute conveyor are installed with coal, the coal is loaded into the central tank scraper chain drag, slide in the central tank to remove the uninstall side.?
General Scraper Conveyor function of the following conditions in the use of 25 °.?Scraper conveyor in use are subject to tension, compression, bending, impact and corrosion and other effects of friction, therefore, must have sufficient strength, stiffness, wear and corrosion resistance.?Because of its mode of transport is the material and the scraper chain sliding in slots, so running resistance and wear are great.?However, coal in the coal face, There is no better machine can replace only from the structure, the intensity of ongoing research and manufacturing process to make it more perfect and durable.?
Reproduced large-scale machine is fully coal face with the equipment supporting the use of the Gate transmission, reproduced equipment, to complete the face conveyor sent to the coal transportation, transit facilities to follow up on the conveyor belt of tasks and to provide the appropriate means of connection. This manual introduces the conveyor drive on the design calculations.?SGB630/150C type conveyor unit of AC is mainly motor, gear box and hydraulic coupler component, the dual-head conveyor drive motor output of the power transmission through three gears, final drive sprocket rotation.
In addition, returning use for SGB630/220 scraper conveyor and maintenance proves, In order to be able to good full play performance of person who should mine, reach the best working result.
Key words:scraper conveyor; reducer; machine head; aircraft tail; hydraulic coupler.
The Ninth International Conference on Electronic Measurement Non metallic wear particles which result from combustion and failure of the seal and filter device Environmental pollutant particles including various particles in the air especially seen in open systems where the contamination level is higher and the contaminant usually exists as oxide The sizes of these particles are between 1 40 m and those between 20 30 m have the greatest impact on the equipment while those below 1 m have no effect on the equipment 5 As a result the sensor should be most sensitive to particles of size between 1 40 m The suspended particles in the oil have a significant impact on the oil s optical properties Turbidity can be used to describe the impact of the particles on the light transmittance character of the oil The connection between the turbidity and contamination level allows this level to be semi quantitatively determined by measuring the turbidity Figure 1 shows the schematic of the optical fiber sensor The light emitted from the semiconductor laser passes through the optical fiber and fiber optic collimator and then enters the oil pool of interest The photodetector collects the photons transmitted and reflected and transforms them into voltage which conveys information of the solid particle contamination in the oil Fig 1 The schematic diagram of the optical fiber sensing 4 808 978 1 4244 3864 8 09 25 00 2009 IEEE Authorized licensed use limited to CHINA UNIVERSITY OF MINING AND TECHNOLOGY Downloaded on March 31 2010 at 21 17 48 EDT from IEEE Xplore Restrictions apply The Ninth International Conference on Electronic Measurement N is the concentration of particles D is the particle diameter and g305 is the cross sectional area of the particle facing the light Summing formula 3 for particles of different size in a multiparticle system one can get m 20 ii i i 1 I g652 Ln D N K g540 m D L I4 g166 5 Where m is the refractive index of the particle relative to the surrounding medium N i is the particle number with the diameter D i Letting g545 denote the proportion of particles the relation between gravimetric frequency W and the particle size distribution is expressed as follows 3 iii g652 W D g545N 6 6 Plugging 6 into 5 one can get the formula in the case of a single wavelength m 0 i i i 1 i I W Ln C K g540 m D ID g166 7 From 3 4 we can see for the monodisperse particle system that when penetration depth is fixed the value of 0 I Ln I is proportional to the particle s number concentration and thus also the particle s weight concentration i e the particle s weight concentration can be indirectly obtained by measuring 0 I Ln I In this way the oil contamination level can be determined SELECTION OF WAVELENGTH Light is made up of photons of certain energy dependent on wavelength The molecules and atoms constituting the substance are at different movement modes corresponding to different energy levels When the light travels in the oil the absorption by oil molecules is quantized by those energy levels such that the absorbed photon can excite the molecule s rotational or vibrational modes or electron energy levels The wavelength of the light applied by the sensor should meet the following conditions 1 sensitive to the solid particles in the oil 2 The absorption rate of light by the oil remains essentially unchanged at the vicinity of the selected wavelength 3 The decay rate should be low when the light passes through the oil 1 20 engine oil 2 vacuum pump oil 3 MD 1130 4 HL 110 5 32 hydraulic oil Fig 2 Transmittance characteristics curve of several oil Generally the solid particles of sizes between 5 30 m are the most dangerous contamination According to light absorption and scattering theory we can see that the absorption and scattering of the light by oil is strongest when the ratio of particle size to the wavelength of light is about 10 In order to enable the selected wavelengths of light sensitive to these pollutants wavelength of 0 5 5g541m shall be selected With light of such wavelengths transmittance curves were obtained by collocating different types of oil samples and using Hatachi340 Recording Spectrophotometer as shown in Figure 2 The left panel is the transmittance curve of the five oil samples between the wavelength 0 4 1 0 m while the right one corresponds to wavelengths of 1 0 2 2 4 809 Authorized licensed use limited to CHINA UNIVERSITY OF MINING AND TECHNOLOGY Downloaded on March 31 2010 at 21 17 48 EDT from IEEE Xplore Restrictions apply The Ninth International Conference on Electronic Measurement this is because of the commonness of the oil structure made up of two elements namely carbon and hydrogen The above analysis shows that when wavelength is between 0 7 0 9g541m transmittance is relatively stable and large combining the typical transferring window of the optical fiber eventually the wavelength of the testing optical is determined as 850nm STRUCTURE DESIGN OF THE SENSOR The sensor is mainly used for online monitoring for the oil contamination of the reducer of the coal mine scraper conveyor To that end the sensor is embedded in the reducer s tank In order to prevent the particles in the oil from accumulating on the glass baffle with time which may lead to inaccurate measurement the internal glass baffle must be cleaned regularly The mechanical structure of sensor is as follows Fig 3 The mechanical structure of sensor 1 fiber 2 thread of photodetector 3 lazer 4 flange 5 inner core 1 6 upper chamber of exterior sheath 7 sealing sheath 8 fastening nut 9 Seal circle 10 fastening bolt 11 quartz glass baffle 1 12 Seal circle on the quartz glass 13 lead cavity 14 quartz glass baffle 2 15 photodetector 16 lower chamber of exterior sheath 17 orientation sheath 18 inner core 4 19 inner core 2 20 inner core 3 Explanation of the sensor s structure 1 The main structure of the sensor is made up of inner core exterior sheath and sealing sheath 2 The inner core is made up of four parts which are connected by fastening bolts The quartz glass baffle which constitute the left and right baffle of the oil pool is installed in the inner core 3 The exterior sheath is made up of upper and lower chambers the external oil can flow through the holes in the exterior sheath into the oil pool measured Through the cooperation of lower chamber of exterior sheath and sealing sheath the inner core can be separated from the external oil so that the inner core can be taken out and the quartz glass baffle be cleaned TEST CALIBRATION Use the particle counter to calibrate the oil of different contamination degrees which are collocated in accordance with the law of gravimetric method Put the oil into the sensor and measure the output signals corresponding to oil of different degrees and the signal of the point for changing oil Because N320 lubricant is widely used in the reducer of heavy duty machines in the coal mine it can be used as based lubricant for the collocation of different contamination degrees of oil Currently NAS1638 contamination standard is widely used First of all it can be seen from Table 1 that the upper limit of the solid particle contamination in the oil is 0 5 percent According to table 2 we can also see that the weight percentage of 0 5 percent corresponds to NAS18 contamination degree Totally 13 kinds of oil with the oil contamination degrees from NAS8 to NAS20 are collocated NAS1638 contamination standard totally has 14 contamination degrees from NAS00 to NAS12 the ratio of particle concentration of adjacent two levels is 2 Therefore when the contamination level is above 12 extrapolation can be used to decide it The contamination level of the oil used in mining machinery and equipment is far greater than NAS12 so we can just use the method to solve this problem 8 Table 1 L CKC exchanging standard of industrial closed gear oil SH T0586 item Exchanging oil standard appearance abnormity Movement viscosity 40 rate of change 15 or 20 moisture 0 5 Mechanical impurities g149 0 5 Copper corrosion 100 3h degree g149 3b Timken OK value N g148 133 4 4 810 Authorized licensed use limited to CHINA UNIVERSITY OF MINING AND TECHNOLOGY Downloaded on March 31 2010 at 21 17 48 EDT from IEEE Xplore Restrictions apply The Ninth International Conference on Electronic Measurement Instruments ICEMI 2009 Table 2 Weight contamination standard OIL CALIBRATION Calibrate the oil sample collocated by gravimetric method with the particle counter and get the accurate contamination level of them But the calibration will have the following questions 1 The oil viscosity used for Particle Counter should be between 10 and 15 while N320 does not meet this requirement of viscosity 2 The upper limit contamination degree of the oil tested by Particle Counter is NAS12 This problem can be solved by oil diluting but this can cause large error for high contamination degree oil For problem 1 collocate the mixture of oil and Petroleum ether according to different proportion measure the viscosity of the mixture with the viscometer and get the conclusion that when the oil and Petroleum ether meet the proportion of 3 1 the viscosity of mixture meets the requirement of particle counter For problem 2 choose four out of the 13 oil samples with the contamination level NAS12 NAS14 NAS16 NAS18 to measure using Particle Counter if the contamination level measured by Particle Counter is the same with their Nominal level it illustrates that the oil contamination collocated by gravimetric method is consistent with that measured using Particle Counter Or else if certain rule can be found from the measurement results the actual contamination levels of other oil sample can be speculated using this rule From the measurement result of the four oil samples we can see that the contamination level measured by Particle Counter is 2 degree higher than that of the oil sample collocated with the gravimetric method In accordance with the law the actual contamination level of the 13 kinds of oil is from NAS10 to NAS22 The corresponding contamination level of the point of changing oil is NAS20 Measure the oil contamination of the collocated oil using the sensor respectively During the measurement the light from the semiconductor laser travels through the optical fiber the optical fiber collimator the oil and finally reaches the surface of the photodetector By measuring the output voltage of the photodetector we can obtain information of the contamination level from NAS10 to NAS22 as shown in Table 3 Table 3 Data of light penetration test NAS contamination level 10 11 12 13 14 15 16 Output voltage mv 402 401 401 401 401 401 400 NAS contamination level 17 18 19 20 21 22 Output voltage mv 398 392 390 368 357 338 338 Data analysis as can be seen from figure 4 1 The output voltage value of the photodetector is basically unchanged and is the same compared with the clean oil This shows that the blocking of the light by the particles in the oil when the oil contamination level is below NAS16 may be negligible 2 The output voltage of the photodetector falls apparently when measuring the oil of the contamination level above NAS17 This shows that the blocking of the light become obvious from this contamination level The contamination level of the point of changing oil is NAS20 so this point is measurable Fig 4 The output voltage of the photodetector corresponding to the NAS contamination level CONCLUSION The oil contamination sensor is described in this paper The measuring principle selection of wavelength mechanical design features collocation of testing oil calibration of sensor and the analysis of the calibrating data are analyzed It can be seen from the data that the point of changing oil is measurable which proves that the sensor can meet the requirements for in line oil contamination monitoring of the scraper conveyor gear reducer However the sensor also has some shortcomings for example the color of the oil will change after long term use which will affect the transmittance and leading to measuring errors The test is carried out at room temperature and is inconsistent with the actual status of oil temperature which affects the rate of transmission So the next step would be to study how to eliminate the impact of the oil temperature and color to improve the accuracy of the sensor Contamination degree NAS1638 12 13 14 15 16 mg 1000ml 50 100 200 400 800 Contamination degree NAS1638 17 18 19 20 mg 1000ml 1600 3200 6400 12800 12800 4 811 Authorized licensed use limited to CHINA UNIVERSITY OF MINING AND TECHNOLOGY Downloaded on March 31 2010 at 21 17 48 EDT from IEEE Xplore Restrictions apply The Ninth International Conference on Electronic Measurement Instruments ICEMI 2009 REFERENCES 1 Jones M H Tribology a key element in condition monitoring Conf On Condition Monitoring Oxford Proc of Inter 2001 2 Qingmin Meng Study on the On line Oil Monitor Based on Optical Fiber Sensor Chinese Hydraulics Pneumatics Vol 2006 5 pp 34 37 May 2006 3 Hanliang Xiao Ferrography technology and its application in mechanical diagnosis China Communications press Beijing 1944 4 Yonghui Yin Xinping Yan Hangliang Xiao Development on Optic f iber Transducer in Oil Contamination Monitoring Instrument Technique and Sensor Vol 2006 11 pp 3 4 Dec 2006 5 Ball P G Machine wear analysis a rational approach to methods integration for maximum benefits Lubrication Engineering Vol 54 No 3 pp 18 22 Mar 1998 6 Yutian Wang Optoelectronics and optical fiber sensing technology National Defence Industry Press Beijing 2003 7 Fuquan Zhang Rongshan Sun Guowei Tang Optical Beijing Normal University Press Beijing 1985 8 ZhengduoPang and Guoying Meng collocating and experimental demarcating of the N320 lubricating oil servicing the design of the contamination sensor Chinese Journal of Sensors and Actuators Vol 20 No 1 pp 247 250 Jan 2007 4 812 Authorized licensed use limited to CHINA UNIVERSITY OF MINING AND TECHNOLOGY Downloaded on March 31 2010 at 21 17 48 EDT from IEEE Xplore Restrictions apply