壓縮包內(nèi)含有CAD圖紙和說(shuō)明書(shū),均可直接下載獲得文件,所見(jiàn)所得,電腦查看更方便。Q 197216396 或 11970985
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě)) 第10周
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
本次是共性的要求:
1、將零件圖全部掃尾,轉(zhuǎn)入下一部工作;
2、按每個(gè)人任務(wù)書(shū)要求,進(jìn)入設(shè)計(jì)說(shuō)明書(shū)或者論文的寫(xiě)作;
3、注意查閱所提供的各類(lèi)文獻(xiàn)資料以及老師提供的參考書(shū);
4、工藝方案分析比較要細(xì),然后確定所需磨具的結(jié)構(gòu),這是本次設(shè)計(jì)的關(guān)鍵;
5、時(shí)間要求:5月20日前后初步提交老師初審。
指導(dǎo)教師簽名: 20**年4月25日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
在說(shuō)明書(shū)編寫(xiě)過(guò)程中將隨時(shí)上網(wǎng)交流,請(qǐng)教老師。
學(xué)生簽名: 20**年4月26日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě)) 第11周
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
1、布置學(xué)生按規(guī)定的格式編寫(xiě)論文,注意重點(diǎn)及論文的要求。
指導(dǎo)教師簽名: 20**年5月5日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、隨時(shí)與指導(dǎo)老師在網(wǎng)上交流。
2、多查閱文獻(xiàn)。
學(xué)生簽名: 20**年5月6日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě)) 第12周
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
1、重點(diǎn)指導(dǎo)校核及計(jì)算。
指導(dǎo)教師簽名: 20**年5月9日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、我先復(fù)習(xí)所學(xué)過(guò)的有關(guān)課程。
2、要寫(xiě)的內(nèi)容很多。
3、計(jì)算量較大。
學(xué)生簽名: 20**年5月9日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě)) 第13周
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
1、繪制一張手工零件圖。
指導(dǎo)教師簽名: 20**年5月16日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、完成手繪并在老師指導(dǎo)下完成修改。
學(xué)生簽名: 20**年5月16日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě)) 第14周
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
1、零件圖未完成;
指導(dǎo)教師簽名: 20**年5月23日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、仔細(xì)完成零件圖
學(xué)生簽名: 20**年5月23日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě)) 第15 周
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
1、修改格式及字體;
2、檢查自己的任務(wù)是否完成;
3、熟悉圖紙和論文內(nèi)容;
4、準(zhǔn)備答辯
指導(dǎo)教師簽名: 20** 年5月30日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
先熟悉圖紙,再熟悉文章
學(xué)生簽名: 20**年5月30日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě))
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
1、交外文翻譯(與專(zhuān)業(yè)相關(guān)的外文資料)漢字3000左右(含譯文與原文)
2、公布本次畢業(yè)設(shè)計(jì)有關(guān)題目,選題。
3、題目:DZD450型真空包裝機(jī)設(shè)計(jì)。
3、擬開(kāi)題報(bào)告初稿。
指導(dǎo)教師簽名: 20** 年2月22日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、完成外文翻譯漢字3000左右。
2、大致了解DZD450型真空包裝機(jī)設(shè)計(jì)。
3、課外閱讀相關(guān)資料。
4、了解開(kāi)題報(bào)告格式。
學(xué)生簽名: 年 月 日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě))
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
1、開(kāi)題報(bào)告格式按照有關(guān)規(guī)定進(jìn)行調(diào)整。
2、下達(dá)畢業(yè)設(shè)計(jì)任務(wù)書(shū)。
3、初步檢查開(kāi)題報(bào)告編寫(xiě)進(jìn)度。
指導(dǎo)教師簽名: 20**年 2 月 29日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、對(duì)譯文內(nèi)容進(jìn)行修改。
2、對(duì)開(kāi)題報(bào)告的格式進(jìn)行修改。
3、譯文格式,字體、段落進(jìn)行了解。
4、開(kāi)題報(bào)告的細(xì)節(jié)經(jīng)指導(dǎo)進(jìn)行修改。
學(xué)生簽名: 年 月 日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
2
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě))
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
1、本次采用的方式:網(wǎng)上指導(dǎo)。
2、譯文格式,字體、段落要重新處理一下。
3、開(kāi)題報(bào)告內(nèi)容的大框架還可以,有的地方需細(xì)化。
指導(dǎo)教師簽名: 20**年3 月7 日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、完成了外文翻譯任務(wù)。
2、詳細(xì)閱讀了任務(wù)書(shū)。
3、完成了開(kāi)題報(bào)告任務(wù)。
4、大致了解畢業(yè)設(shè)計(jì)方向。
學(xué)生簽名: 年 月 日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě))
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
本次現(xiàn)場(chǎng)統(tǒng)一布置和講解:
1、主要講解每位所設(shè)計(jì)的題目,如何開(kāi)始進(jìn)行設(shè)計(jì)和構(gòu)思。
2、統(tǒng)一設(shè)計(jì)時(shí)使用的圖紙標(biāo)題欄要求。
3、設(shè)計(jì)時(shí)使用CAD軟件繪圖,除cad繪圖外必須有手工繪制的一張3號(hào)裝配圖。
指導(dǎo)教師簽名: 20**年3月14日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、對(duì)課題有了更加深入的了解。
2、了解了繪圖格式及任務(wù)數(shù)目。
3、對(duì)結(jié)構(gòu)的計(jì)算及細(xì)節(jié)進(jìn)行了解。
4、對(duì)真空工作原理進(jìn)行了解。
學(xué)生簽名: 年 月 日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě))
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
1、查閱資料,參考同類(lèi)產(chǎn)品的基礎(chǔ)上構(gòu)思自己所設(shè)計(jì)結(jié)構(gòu)。針對(duì)熱合部件和四連桿機(jī)構(gòu)進(jìn)行改進(jìn)。
2確定運(yùn)動(dòng)原理圖,機(jī)械系統(tǒng)示意圖,初定真空包裝機(jī)的結(jié)構(gòu)形式
3、去圖書(shū)館查閱相關(guān)資料,啟發(fā)設(shè)計(jì)思路。
4、認(rèn)真閱讀所提供參考書(shū)的相關(guān)章節(jié),了解兩工位真空包裝機(jī)原理。
指導(dǎo)教師簽名: 20** 年3 月 21 日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、 查閱了各種資料,對(duì)運(yùn)動(dòng)原理有了較深刻的理解。
2、 參考了同類(lèi)產(chǎn)品,對(duì)包裝機(jī)原理,結(jié)構(gòu)設(shè)計(jì)有了大致了解。
3、 對(duì)課題設(shè)計(jì)的問(wèn)題進(jìn)行思考,并查尋資料。
學(xué)生簽名: 年 月 日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
2
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě))
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
該生因工作缺席指導(dǎo)。
指導(dǎo)教師簽名: 20** 年3 月28 日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、 補(bǔ)充了機(jī)械設(shè)計(jì)方面的知識(shí)。
2、 完成課題總裝圖的設(shè)計(jì),一些細(xì)節(jié)需要改進(jìn)。
3、 對(duì)標(biāo)注要求進(jìn)行完善。
4、 對(duì)零件的選取進(jìn)行查詢資料。
學(xué)生簽名: 年 月 日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
2
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě))
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
網(wǎng)上指導(dǎo):
1、總裝圖總體布置合理,視圖選擇正確,表達(dá)方法正確,投影規(guī)律正確,但一些細(xì)節(jié)結(jié)構(gòu)表達(dá)有問(wèn)題或未表達(dá)。
2、標(biāo)注上有一些問(wèn)題。
3、貫徹國(guó)標(biāo)要加強(qiáng)。
指導(dǎo)教師簽名: 20**年4月4 日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、 完成總裝圖的標(biāo)注及明細(xì)表。
2、 完成零件圖的標(biāo)注及技術(shù)要求。
3、 完成國(guó)標(biāo)零件的選取。
4、 對(duì)技術(shù)要求及工藝方面的資料進(jìn)行查閱了解。
學(xué)生簽名: 年 月 日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
2
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě))
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
本周集中指導(dǎo),主要講解共性的問(wèn)題。
1、從整體情況看圖紙?jiān)O(shè)計(jì)進(jìn)度基本一致,但大部分同學(xué)零件圖設(shè)計(jì)方面還有少量尺寸遺漏,粗糙度標(biāo)的不完善,回去仔細(xì)檢查一下。
2、總裝圖還有尺寸標(biāo)注問(wèn)題。
3、技術(shù)要求要標(biāo)注清楚。
4、抓緊時(shí)間處理完圖紙問(wèn)題,接下去著手論文寫(xiě)作。
指導(dǎo)教師簽名: 20**年4月11日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
1、 修改了總裝圖和零件圖上的不足。
2、 在結(jié)構(gòu)上有了較大的改動(dòng)。
3、 對(duì)尺寸標(biāo)注進(jìn)行了修改。
4、準(zhǔn)備論文的編寫(xiě)。
學(xué)生簽名: 年 月 日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
畢業(yè)設(shè)計(jì)(論文)指導(dǎo)情況記錄表
(本表由學(xué)生和指導(dǎo)教師按指導(dǎo)情況分別如實(shí)填寫(xiě)) 第9周
教師指導(dǎo)意見(jiàn)及指導(dǎo)方式(教師填寫(xiě)):(指導(dǎo)學(xué)生開(kāi)題、查閱文獻(xiàn)資料、綜合運(yùn)用知識(shí)、方案設(shè)計(jì)、論文寫(xiě)作、外文應(yīng)用、實(shí)驗(yàn)、指出存在問(wèn)題及解決辦法等簡(jiǎn)況)
1、總裝圖結(jié)構(gòu)有嚴(yán)重錯(cuò)誤。
指導(dǎo)教師簽名: 20**年 4月 18日
學(xué)生意見(jiàn)(任務(wù)完成情況及需要解決的問(wèn)題):
回去仔細(xì)修改。
學(xué)生簽名: 20**年4月18日
注:此頁(yè)可根據(jù)需要自行復(fù)制,每指導(dǎo)一次,填寫(xiě)一次,不受頁(yè)數(shù)限制。
1
任務(wù)書(shū)
題 目
DZD450型真空包裝機(jī)設(shè)計(jì)
論文時(shí)間
20**年2月20日至 20**年6月1日
課題的主要內(nèi)容及要求(含技術(shù)要求、圖表要求等)
根據(jù)以下參數(shù)
1. 熱封條數(shù):兩條
2. 真空室絕對(duì)壓強(qiáng):≤ 1.332KPa
3. 最大封口有效尺寸(長(zhǎng)×寬) mm:450×10
4. 加熱溫度調(diào)節(jié)范圍(℃) :90~240
5. 加熱為時(shí)間調(diào)節(jié)范圍(S) :1~10
6. 包裝能力(次/小時(shí)):180~250
7. 電源(三相四線制):380V/50Hz
8. 額定功率(KW):1.3
9. 控制特征:人工上袋自動(dòng)控制
設(shè)計(jì)一種真空包裝機(jī),完成總裝圖及零件。編寫(xiě)設(shè)計(jì)說(shuō)明書(shū);完成專(zhuān)業(yè)外文資料翻譯1份。
課題的實(shí)施的方法、步驟及工作量要求
設(shè)計(jì)方法:學(xué)生在指導(dǎo)教師的指導(dǎo)下,利用所學(xué)的課程并自學(xué)有關(guān)知識(shí),掌握機(jī)械設(shè)計(jì)的特點(diǎn)、方法,借助《機(jī)械設(shè)計(jì)手冊(cè)》等技術(shù)資料,完成本機(jī)設(shè)計(jì)。
設(shè)計(jì)步驟:調(diào)研收集設(shè)計(jì)資料——根據(jù)所給定的參數(shù)制定總體設(shè)計(jì)方案——完成總裝圖及部裝圖——完成零件圖——編寫(xiě)設(shè)計(jì)說(shuō)明書(shū)。
工作量要求:設(shè)計(jì)圖紙工作量合計(jì)3張零號(hào)圖紙(A0-2,A1-0,A2-1,A3-1,A4-13);畢業(yè)設(shè)計(jì)說(shuō)明書(shū)不少于8000漢字;外文資料原文(與課題相關(guān)的1萬(wàn)印刷符號(hào)左右),外文資料翻譯譯文(約3000漢字)。
指定參考文獻(xiàn)
[1]屈能勝.我國(guó)食品包裝機(jī)械發(fā)展綜述[M].輕工機(jī)械,2005.02
[2]金國(guó)斌.現(xiàn)在包裝技術(shù)[M].上海:上海大學(xué)出版社,20001.4
[3]錢(qián)俊,余洗,劉冬林.特種包裝技術(shù)[M].北京:化學(xué)工業(yè)出版社。2003.11
[4]徐灝等.機(jī)械設(shè)計(jì)手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1991
[5]文耀平.真空包裝機(jī)加熱封口變壓器設(shè)計(jì)計(jì)算方法[J].設(shè)計(jì)探討,1994
[6]王朝文.電熱電器的設(shè)計(jì)制造與使用維修[J],北京:機(jī)械工業(yè)出版社,1987
[7]習(xí)培松.張道林,四連桿真空包裝機(jī)幾何參數(shù)的計(jì)算[J].農(nóng)機(jī)與食品機(jī)械,1998
[8]王萍.真空包裝機(jī)氣路系統(tǒng)設(shè)計(jì)原理[J].包裝與食品機(jī)械,1998
[9]甘永利.幾何公差與檢測(cè)[M].上海:上海工業(yè)出版社,2004
[10]成大先.機(jī)械設(shè)計(jì)手冊(cè)(第七卷)[M].北京:化學(xué)工業(yè)出版社,2002
[11]濮良貴,紀(jì)名剛主編.機(jī)械設(shè)計(jì)(第七版)[M].北京:高等教育出版社,2001
畢業(yè)設(shè)計(jì)(論文)進(jìn)度計(jì)劃(以周為單位)
第 1 周(20**年 2月20日----20**年 2 月 26 日):
下達(dá)設(shè)計(jì)任務(wù)書(shū),明確任務(wù),熟悉課題,收集資料,上交外文翻譯、參考文獻(xiàn)和開(kāi)題報(bào)告。
第2周——第8周(20**年 2 月 27 日----20**年4 月 15 日):
制定總體方案,繪制總裝圖草圖。
第 9 周——第14周(20**年4月16 日----20**年 5月 27日):
修改并完成總裝圖及部裝圖,完成有關(guān)零件圖的設(shè)計(jì)。
第15 周——第 16 周(20**年 5 月28日----20**年 6 月5 日):
編寫(xiě)設(shè)計(jì)說(shuō)明書(shū)
第 16 周(20**年 6月 6日----20**年6 月 8 日):
準(zhǔn)備答辯
備注
Stresa Italy 25 27 April 2007 0 LEVEL VACUUM PACKAGING RT PROCESS FOR MEMS RESONATORS Nicolas Abel 1 3 Daniel Grogg1 Cyrille Hibert2 Fabrice Casset4 Pascal Ancey3 Adrian M Ionescu1 1LEG Ecole Polytechnique F d rale de Lausanne EPFL Switzerland 2CMI EPFL 3ST Microelectronics France 4CEA LETI MINATEC France ABSTRACT A new Room Temperature RT 0 level vacuum package is demonstrated in this work using amorphous silicon aSi as sacrificial layer and SiO2 as structural layer The process is compatible with most of MEMS resonators and Resonant Suspended Gate MOSFET 1 fabrication processes This paper presents a study on the influence of releasing hole dimensions on the releasing time and hole clogging It discusses mass production compatibility in terms of packaging stress during back end plastic injection process The packaging is done at room temperature making it fully compatible with IC processed wafers and avoiding any subsequent degradation of the active devices 1 INTRODUCTION MEMS resonators performances have been demonstrated to satisfy requirements for CMOS co integrated reference oscillator applications 2 3 Different packaging possibilities were proposed in previous years using either a 0 level approaches 4 5 or wafer bonding approaches 6 According to industry requirements 0 level thin film packaging using standard front end manufacturing processes is however likely to be the most cost efficient technique to achieve vacuum encapsulation of MEMS components for volume production 2 DEVICE DESCRIPTION AND PACKAGING DESIGN The packaging process has been done on a MEMS resonator having MOSFET detection 1 The device is based on a suspended gate resonating over a MOSFET channel which modulates the drain current The advantage of this technique is the much larger the output detection current than for the usual capacitive detection type due to the intrinsic gain of the transistor The RSG MOSFET device fabrication process and performances were previously described in 7 The process steps are presented in Fig 1 where a 5 m thick amorphous silicon aSi layer is sputtered on the already released MEMS resonator followed by a 2 m RF sputtered SiO2 film deposition A quasi zero stress aSi film deposition process has been developed the quasi vertical deposition avoids depositing material under the beam lowering the releasing time Releasing holes of 1 5 m were etched through the SiO2 layer and the releasing step is done by dry SF6 plasma Due to pure chemical etching high selectivity of less than 1nm min on SiO2 was obtained The holes were clogged by a non conformal sputters SiO2 deposition at room temperature Fig 1 Schematic of the 0 level vacuum package fabrication process of a RSG MOSFET Packaging process has been performed on the metal gate SG MOSFET and Fig 2a shows an SEM picture of a released AlSi based RSG MOSFET with a 500nm air gap a beam length and width of respectively 12 5 m and 6 m with a 40nm gate oxide A vacuum packaged RSG MOSFET is shown in Fig 2b highlighting the strong bonds of the re filled releasing hole after clogging Cross section of a releasing hole in Fig 2c shows more than 1 m bonding surface to ensure cavity sealing A FIB cross section in Fig 2d shows the suspended SiO2 EDA Publishing DTIP 2007 ISBN 978 2 35500 000 3 Nicolas Abel Daniel Grogg Cyrille Hibert Fabrice Casset Pascal Ancey Adrian M Ionescu 0 LEVEL VACUUM PACKAGING RT PROCESS FOR MEMS RESONATORS membrane above the suspended gate The vacuum atmosphere inside the cavity is obtained by depositing the top SiO2 layer under 5x10 7mBar given by the equipment Suspended Gate Drain Source Bulk contact a 10 m Drain Source Suspended Gate 6 m 1 m b SiO2 c 1 m Hole diameter 1 5 m Vacuumed cavity 1um SiO2 d Drain Suspended Gate 50 m Fig 2 SEM pictures of a AlSi based RSG MOSFET b Top view of a SiO2 cap covering the RSG MOSFET c Cross section of releasing holes filled with sputtered SiO2 d FIB cross section of the packaged RSG MOSFET material re deposited during the FIB cut is surrounding the suspended gate and the SiO2 membrane The slightly compressive SiO2 membranes show very good behavior for the thin film packaging as seen in Fig 3 where cavities were formed on large opening size During the clogging process due to the highly non conformal deposition the amount of material entering in the cavity has been measured to be only 80nm compared to the 2 5 m oxide deposited Residues inside the cavity are confined in an 8 to 10 m diameter circle but strongly depend on the topology inside the cavity The oxide thickness needed to clog the holes strongly depends on the hole width over height ratio which therefore determines the amount of residues in the cavity 40 m SuspendedSiO2 membranes a 2 m 1 1 m aSi0 5 m wet oxide 4 5 m sputtered SiO2 b Fig 3 a b Cross section of a 2um SiO2 suspended membrane having a releasing hole clogged by a 2 5 m SiO2 sputtering deposition 3 EFFECT OF OPENING SIZE ON RELEASING RATE AND CLOGGING EFFECT Etching rate variation on aSi related to the hole opening size and the aSi thickness is shown in Fig 4 Small holes openings decrease the etching rate A dual underetching behavior due to aSi thickness variation and holes diameters is observed after a 2 min release step for a small hole aperture 2 m diameter exposed surface factor is dominant and etching rate is 3 times greater for the thin aSi However for large openings 9 m diameter for which underetch distance is more important path factor representing the lateral opening height for species EDA Publishing DTIP 2007 ISBN 978 2 35500 000 3 Nicolas Abel Daniel Grogg Cyrille Hibert Fabrice Casset Pascal Ancey Adrian M Ionescu 0 LEVEL VACUUM PACKAGING RT PROCESS FOR MEMS RESONATORS to reach aSi becomes important and then etching ratio decreases to 1 3 0 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 Hole diameter um Un de re tc h r at e um m in 1 1um aSi 3 3 um aSi Fig 4 Underetch rate for various releasing holes diameters with amorphous silicon sacrificial layers of 1 1 m and 3 3 m after 2min releasing After release encapsulation is performed by sputtered deposition of SiO2 under high vacuum of 5x10 7mbar using the intrinsic non conformal deposition to clog holes as shown in Fig 5 Clogging effect is strongly material dependent and is related to the sticking coefficient that defines probability for a molecule to stick to the surface The coefficient is below 0 01 for LPCVD Poly Si but 0 26 for SiO2 therefore being more suitable for clogging purpose SiO2membrane 2 m Clogging Holeaperture SiO2redeposition Remaining aperture Fig 5 Schematic of a cross section of the SiO2 membrane clogged by SiO2 sputtering deposition Hole clogging has a strong dependence on the opening aspect ratio as presented in Fig 6 Holes with diameter over height aspect ratio below 1 are clogged for SiO2 thickness of 2 m Hole with opening ratio of 1 5 could only be clogged for a 3 m thick SiO2 deposition The hole clogging rate is measured to be 330nm per deposited micron of SiO2 0 1000 2000 3000 4000 0 1 2 3 Opening aspect ratio Re m ain in g ap er tu re n m 2 m SiO2 Initial SiO2 membrane thickness 2 m 3 m SiO2 Re ma ini ng ap er tu re n m Fig 6 hole clogging effect depending on the diameter over height ratio in the 2 m SiO2 membrane Right Remaining aperture diameter in nm for 2 m and 3 m SiO2 deposition for hole clogging The effect of hole geometry on underetch rate and clogging has been studied on square and rectangular holes in Fig 7 Rectangular opening has a quasi identical underetching than square shape of the same opening area while clogging is 10 times more important 0 5 10 15 20 25 30 35 0 5 10 15 20 Relasing time min Un de re tc h um 2um 2um x etching direction y etching direction x y x x Fig 7 Underetch length after 16min release for 29 1 m2 square and rectangle release holes red dotted rectangles The initial SiO2 thickness is a 2 m and the thickness of aSi is 1 1 m Remaining hole size after 2 5 m SiO2 deposition is 1 4 m for the square and 140nm for the rectangle 4 PACKAGING ISSUES FOR PRODUCTION ENVIRONMENT For industrial production of integrated MEMS 0 level package has to sustain plastic molding which corresponds to an isostatic pressure of around 100Bar Encapsulation film thickness has been designed to lower the impact of the pressure during molding FEM simulations done with Coventor in Fig 8 show that the EDA Publishing DTIP 2007 ISBN 978 2 35500 000 3 Nicolas Abel Daniel Grogg Cyrille Hibert Fabrice Casset Pascal Ancey Adrian M Ionescu 0 LEVEL VACUUM PACKAGING RT PROCESS FOR MEMS RESONATORS molding induced package deflection is reduced to 25nm having a 4 5 m thick SiO2 film which makes it compatible with standard industrial back end processes 0 1 5 13 19 25 nm Displacement a Coventor 0 0 4 0 8 1 2 1 6 MPa Stress b Coventor Fig 8 FEM modelling of the packaged resonator under applied isostatic pressure mimicking plastic injection process step Effect of LTO and PECVD nitride materials on capping deflection under molding stress are presented in Table I Membrane thickness can then be optimized to lower the molding induced deflection by considering Young s modulus and maximum stress before failure of the two materials Structural layer material LTO Nitride PECVD Film thickness 4 5 m 2 5 m Max stress before failure 2GPa 9GPa Stress due to molding 1 6MPa 4MPa Molding induced deflection 25nm 36nm Table I FEM simulations of the structural layer thickness needed to sustain plastic molding over 0 level packaging composed of a 30 mx30 m membrane Comparison with PECVD nitride thickness needed to induce the same deflection On the developed process flow further investigations on vacuum level and long term stability still to be studied in order to fully characterize the packaging This characterization can either be done directly by using helium leakage test 9 or indirectly by actuating the packaged resonator for which quality factor is directly related to the vacuum level 5 CONCLUSION A novel 0 level packaging process was presented using aSi as sacrificial layer and SiO2 as encapsulating layer RSG MOSFET resonators have been successfully encapsulated under high vacuum Impact of back end of line industrial process over the encapsulation has been investigated resulting in optimal cover thickness needed to sustain plastic molding Influence of hole dimensions on releasing time and clogging effect for encapsulation were investigated and optimized packaging parameters are identified for this process 11 REFERENCES 1 N Abel et al Ultra low voltage MEMS resonator based on RSG MOSFET MEMS 06 pp 882 885 2006 2 V Kaajakari et al Low noise silicon micromechanical bulk acoustic wave oscillator IEEE International Ultrasonics Symposium pp 1299 1302 2005 3 Y W Lin et al Low phase noise array composite micromechanical wine glass disk oscillator IEDM 05 pp 287 290 2005 4 N Sillon et al Wafer Level Hermetic Packaging for Above IC RF MEMS Process and Characterization IMAPS 2004 5 B Kim et al Frequency Stability of Wafer Scale Encapsulated MEMS Resonators Transducers 05 vol 2 pp 1965 1968 2005 6 V Kaajakari et al Stability of wafer level vacuum encapsulated single crystal silicon resonators Sensors and Actuators A Physical Vol 130 131 pp 42 47 2006 7 N Abel et al Suspended Gate MOSFET bringing new MEMS functionality into solid state MOS transistor IEDM 05 LATE NEWS pp 479 481 2005 8 S Fr d rico et al Silicon sacrificial layer dry etching SSLDE for free standing RF MEMS architectures MEMS 03 pp 570 573 2003 9 I D Wolf at al The Influence of the Package Environment on the Functioning and Reliability of Capacitive RF MEMS Switches Microwave Journal vol 48 pp 102 116 2005 EDA Publishing DTIP 2007 ISBN 978 2 35500 000 3