插座底板注塑模具設(shè)計與CAE分析(桂理工)
插座底板注塑模具設(shè)計與CAE分析(桂理工),插座,底板,注塑,模具設(shè)計,cae,分析,理工
學(xué)號:3110644204
題目類型:設(shè)計
(設(shè)計、論文、報告)
桂林理工大學(xué)
GUILIN UNIVERSITY OF TECHNOLOGY
本科畢業(yè)設(shè)計(論文)
題目: 插座底板注塑模具設(shè)計與CAE分析
學(xué) 院: 機(jī)械與控制工程學(xué)院
專業(yè)(方向): 機(jī)械設(shè)計制造及其自動化(模具)
班 級: 機(jī)械11-2班
學(xué) 生: 蘇勇孫
指導(dǎo)教師: 楊 輝
2015年 5 月 30 日
桂林理工大學(xué)本科畢業(yè)設(shè)計·論文
摘要
近年來隨著我國工業(yè)的迅猛發(fā)展,塑料制品在計算機(jī)、電子通信、醫(yī)療器械、家電、汽車等領(lǐng)域的應(yīng)用范圍越來越廣,因此對注塑模的要求也越來越高。而長期以來,我國的注塑模設(shè)計主要依靠經(jīng)驗(yàn)來修改設(shè)計方案以尋求優(yōu)化解決方案。這樣就導(dǎo)致了模具加工制造周期長、生產(chǎn)成本高,而且難以保證產(chǎn)品的質(zhì)量。利用注塑成型 CAE 技術(shù)可以在設(shè)計階段對產(chǎn)品設(shè)計和模具設(shè)計的方案進(jìn)行評價,分析出產(chǎn)品可能產(chǎn)生的缺陷,從而優(yōu)化設(shè)計方案,縮短成型周期、降低生產(chǎn)成本。本文以插座底板為研究對象,利用UG軟件進(jìn)行注塑模的輔助設(shè)計,然后利用Moldflow軟件對注塑成型過程進(jìn)行模流分析。通過充填、冷卻及翹曲模擬分析得到最佳的模具溫度、熔體溫度、注塑時間等成型工藝參數(shù)以及發(fā)現(xiàn)注塑成型過程中的各種缺陷,從而優(yōu)化設(shè)計方案以獲得較優(yōu)的模具設(shè)計。
關(guān)鍵詞: 插座底板;注塑模;模流分析;優(yōu)化設(shè)計
Design and CAE analysis of the Injection Mold for Socket Plate
Student:SU Yong-sun Teacher:YANG Hui
Abstract: In recent years, with the rapid development of China's industry, plastics in computers, electronic communications, medical equipment, home appliances, automotive and other fields increasingly wide range of applications, so the injection molding requirements are also increasing. And for a long time, China's injection mold design mainly relies on experience to modify the design in order to seek to optimize solutions. This led to the mold manufacturing cycle is long, high production costs, but it is difficult to ensure product quality. By injection molding CAE technology in the design stage of the product design and die design programs to evaluate, analyze defects in the product may cause to optimize the design, reduce cycle time, reduce production costs. Paper receptacle plate for the study, the application UG software, mold injection mold design, then use Moldflow software for the injection molding process for mold flow analysis. Obtained by filling, cooling and warpage simulation optimal mold temperature, melt temperature, injection molding process parameters of time and the discovery of various defects in the injection molding process to optimize the design to achieve optimum mold design.
Key words:socket plate;injection molding;moldflow analysis;optimum design
II
目次
摘要 I
Abstract. II
1 緒論 1
2 注塑工藝分析及成型方法簡介 2
2.1塑件 2
2.2塑料的種類及選用 3
2.2.1 ABS 3
2.2.2 聚碳酸酯(PC) 4
2.2.3 PC/ABS 4
2.3 生產(chǎn)批量要求 5
2.4 塑件的成型要求 5
2.5 塑件的結(jié)構(gòu)及成型工藝分析 5
2.6 注射機(jī)的初步選擇 5
3 模具設(shè)計 7
3.1 分型面的確定 7
3.2 澆注系統(tǒng)的設(shè)計 8
3.2.1 主流道的設(shè)計 8
3.2.2 冷料穴和拉料桿的設(shè)計 11
3.2.3 分流道的設(shè)計 11
3.2.4 澆口的設(shè)計 12
3.3 成型零件的設(shè)計 13
3.3.1 成型零件工作尺寸的計算 13
3.3.2 成型零件的結(jié)構(gòu)設(shè)計 15
3.4 脫模機(jī)構(gòu)的設(shè)計 16
3.4.1 脫模力的計算 17
3.4.2 脫模機(jī)構(gòu)的選擇 17
3.5 冷卻系統(tǒng)的設(shè)計 17
3.6 排氣系統(tǒng)的設(shè)計 17
3.7 標(biāo)準(zhǔn)模架的選擇 18
3.8 校核計算 18
3.8.1 推桿強(qiáng)度的校核 18
3.8.2 模具與注塑機(jī)的部分相關(guān)尺寸校核 18
4 塑件的模流分析 21
4.1 Autodesk Moldflow軟件介紹 21
4.2 塑件模型的導(dǎo)入與網(wǎng)格劃分 21
4.3 澆口位置分析 23
4.4 成型窗口分析 25
4.4.1 質(zhì)量(成型窗口)XY圖 25
4.4.1 區(qū)域(成型窗口)2D幻燈片圖 26
4.5 充填分析 27
4.5.1 充填時間 27
4.5.2 速度/壓力切換時的壓力 28
4.5.3 流動前沿溫度 29
4.5.4 總體溫度 30
4.5.5 氣穴的分布 30
4.5.6 熔接痕的分布 31
4.6 冷卻分析 31
4.6.1 回路冷卻液溫度 32
4.6.2 回路管壁溫度 32
4.6.3 零件的最高溫度 33
4.6.4 模具溫度 33
4.6.5 優(yōu)化后的回路冷卻液溫度 34
4.6.6 優(yōu)化后的回路管壁溫度 35
4.6.7 優(yōu)化后的模具溫度 36
4.7 翹曲分析 36
4.7.1 所有因素的翹曲變形 36
4.7.2 冷卻不均引起的翹曲變形 39
4.7.3 收縮不均引起的翹曲變形 39
4.7.4 取向不一致引起的翹曲變形 40
4.7.5 角效應(yīng)引起的翹曲變形 40
5 結(jié)論 42
致謝 43
參考文獻(xiàn) 44
1 緒論
模具,被人們稱為“工業(yè)之母”,是工業(yè)生中用來成型制品的工具,生產(chǎn)中75%的粗加工零件和50%的精加工零件是通過模具來成型,絕大部分的塑料制品也是由模具成型。作為國民經(jīng)濟(jì)的基礎(chǔ)行業(yè),模具涉及輕工、化工、冶金、機(jī)械、汽車、電子、建材等各個行業(yè),應(yīng)用范圍十分廣泛。
近年來,隨著我國經(jīng)濟(jì)的快速增長,我國的模具行業(yè)也迅速發(fā)展,特別是在塑料模具方面。根據(jù)中國報告大廳網(wǎng)相關(guān)數(shù)據(jù)顯示,我國塑料模具在整個模具行業(yè)中所占的比例約為30%,在模具進(jìn)出口中的比例達(dá)到了50~70%。塑料模具已經(jīng)形成了一條產(chǎn)業(yè)鏈,從原材料工業(yè)的加工、檢測設(shè)備到機(jī)械、家電、汽車、電子通信、建筑建材等幾大應(yīng)用產(chǎn)業(yè),塑料模具的發(fā)展顯示出一片生機(jī)。但在料制品廣泛應(yīng)用的同時人們對各種設(shè)備和用品輕量化及美觀和手感的要求越來越高,因此對模具的各方面要求也就越高。據(jù)預(yù)測,在未來的模具市場中,我國塑料模具的發(fā)展將快于其它模具,在模具行業(yè)中的比重也將逐步提高。
根據(jù)宇博智業(yè)市場研究中心的了解,隨時模具工業(yè)的日益發(fā)達(dá),許多行業(yè)對模具的要求也開始在變,精密模具行業(yè)前景一片廣闊,市場出現(xiàn)了供不應(yīng)求的狀況。然而我國模具行業(yè)生產(chǎn)的高、中、低端模具的比例極不平衡,這非常不利于我國模具行業(yè)的發(fā)展。在塑料模方面,由于塑料零配件形狀復(fù)雜、設(shè)計靈活,對模具材料、設(shè)計水平及加工設(shè)備均有較高要求,并不是人人都可以輕易涉足的。我們應(yīng)當(dāng)意識到,目前我國與國外技術(shù)水平相比還存在較大差距,主要表現(xiàn)為以下六個方面:
1、整體的發(fā)展不平衡,產(chǎn)品質(zhì)量水平較低;2、工藝裝備落后,組織協(xié)調(diào)能力差;3、企業(yè)的創(chuàng)造開發(fā)能力弱;4、管理落后更甚于技術(shù)落后;5、中高檔產(chǎn)品方面市場需求旺盛,生產(chǎn)發(fā)展難以跟上;6、體制和人才的問題亟需解決。
在模具的發(fā)展方向上,有專家指出,我國模具行業(yè)今后除了要繼續(xù)提高生產(chǎn)能力,更要著重于內(nèi)部結(jié)構(gòu)的調(diào)整和專業(yè)技術(shù)水平的提高。主要是企業(yè)結(jié)構(gòu)向?qū)I(yè)化調(diào)整,產(chǎn)品結(jié)構(gòu)向中高端模具發(fā)展,向自動化、標(biāo)準(zhǔn)化、多功能復(fù)合模和復(fù)合加工、激光加工、高速切削、超精加工和信息化等方向發(fā)展。展望未來,由于國際、國內(nèi)總體環(huán)境良好,國內(nèi)塑料模具各主要用戶行業(yè)仍將持續(xù)以較快速度發(fā)展,塑料模具也必將持續(xù)高速發(fā)展。目前存在的主要問題通過國內(nèi)外的交流與合作以及全行業(yè)的共同努力,這些問題一定會得到很好的解決。
基于上述,本次課題研究的目的在于利用UG等軟件輔助設(shè)計,以及Moldflow軟件進(jìn)行輔助分析以優(yōu)化設(shè)計方案,得到最優(yōu)的結(jié)果,從而降低模具的設(shè)計制造成本。
2 注塑工藝分析及成型方法簡介
2.1塑件
塑件的三維模型如圖2-1所示;二維圖及具體尺寸如圖2-2和圖2-3所示。
圖2-1塑件三維模型
圖2-2塑件三視圖
圖2-3塑件仰視圖
塑件的最大長度為170mm,最大寬度為64mm,最大高度為13mm,壁厚為1.5mm。
2.2塑料的種類及選用
本次設(shè)計初選ABS、聚碳酸酯(PC)、PC/ABS(聚碳酸酯和丙烯腈—丁二烯—苯乙烯共聚物的混合物)三種材料,下面將這幾種材料的特性作對比。
2.2.1 ABS
ABS是丙烯腈—丁二烯—苯乙烯共聚物??梢钥醋魇荘B(聚丁二烯)、BS(丁苯橡膠)、PBA(丁腈橡膠)分散于AS(丙烯腈—苯乙烯的共聚物)或PS(聚苯乙烯)中的一種多組分聚合物。三種組分的作用:
A(丙烯腈)——占20%~30%,使塑件表面具有較高的硬度,提高塑件的耐熱性、耐磨性。
B(丁二烯)——占25%~30%,提高柔順性,保持材料的彈性及耐沖擊強(qiáng)度。
S(苯乙烯)——占40%~50%,保持塑料良好的流動性、著色性、高光潔度及塑件的剛性。
1)化學(xué)和物理性質(zhì):ABS三種單體的比率及兩相中的分子結(jié)構(gòu)決定了它的特性。這使產(chǎn)品在設(shè)計上具有很大的靈活性,并且由此產(chǎn)生了上百種不同品質(zhì)的ABS材料。
ABS的收縮率在0.4%~0.7%之間,比重在1.02~1.08 g/cm3常用1.05 g/cm3。
ABS材料具有優(yōu)越的綜合性能,如制品的強(qiáng)度、硬度高,剛性及耐沖擊性好,制品表面光澤性、耐磨性好。ABS耐高溫工作溫度可以達(dá)到90℃;耐低溫,可以在-40℃下使用。同時耐油,耐酸、堿、鹽。具有一定的化學(xué)穩(wěn)定性和良好的介電性能。
ABS的缺點(diǎn)是,耐氣候性差,易老化,不耐有機(jī)溶劑。
2)注塑工藝條件:
干燥處理:ABS具有吸濕性,要求在加工之前進(jìn)行干燥處理。建議干燥條件為80~90℃下最少干燥2小時。
料筒溫度:180~260℃;建議溫度245℃。
模具溫度:40~90℃(模具溫度影響制品的光潔度,溫度低則光潔度較低)。
注射壓力:56~176MPa。
注射速度:中高速度。
2.2.2 聚碳酸酯(PC)
1)化學(xué)和物理性質(zhì):PC材料剛硬而帶韌性,抗沖擊強(qiáng)度高,熱穩(wěn)定性及光澤度好,塑件的尺寸穩(wěn)定性好,精度高。PC的收縮率為0.5%~0.7%,比重為1.20 g/cm3。
PC具有非常突出的優(yōu)點(diǎn):耐沖擊性非常好,機(jī)械強(qiáng)度高,彈性模量高,受溫度影響小,抗蠕變性突出;耐熱性、耐氣候性好;透光性、著色性好;吸水率低,但對水分極敏感,容易產(chǎn)生應(yīng)力開裂現(xiàn)象;耐氧化劑、還原劑、烯酸等,但不耐堿、酮等有機(jī)溶劑。
PC最大缺點(diǎn)是流動性差,注塑過程較困難,其對壓力不敏感,但對溫度很敏感,因此可采用提高成型溫度的方法來提高流動性。PC的耐磨性、耐疲勞強(qiáng)度差,對缺口敏感,容易產(chǎn)生應(yīng)力開裂,制品表面易出現(xiàn)銀紋。
2)注塑工藝條件:
干燥處理:PC具有吸濕性,在加工前要求干燥處理。建議干燥的條件為100℃~120℃,時間在12小時以上,濕度必須小于0.02%
料筒溫度:270~320℃。PC對壓力不敏感,但對溫度很敏感,因此適當(dāng)提高料筒后段溫度有利于塑化。
模具溫度:80~120℃。適當(dāng)提高模具溫度可以減少模具溫度和塑料熔體溫度的溫差,從而降低制品的內(nèi)應(yīng)力。但溫度過高會容易粘模,且使成型周期加長。
注射壓力:PC流動性差,需用高壓注射(138~200MPa),但要考慮殘留的內(nèi)應(yīng)力可能導(dǎo)致制品開裂。
注射速度:壁薄采用高速注射,壁厚用中速注射。
必要時可進(jìn)行內(nèi)應(yīng)力退火:烘爐溫度為125~135℃,時間2小時,自然冷卻到常溫。
2.2.3 PC/ABS(聚碳酸酯和丙烯腈—丁二烯—苯乙烯共聚物的混合物)
1)化學(xué)和物理性質(zhì):PC/ABS具有PC和ABS兩者的綜合特性,例如PC優(yōu)良的力學(xué)性和熱穩(wěn)定性及ABS的易加工性,同時還具有優(yōu)良的流動性。兩者的比率會影響PC/ABS材料的熱穩(wěn)定性。PC/ABS的收縮率在0.4%~0.6%之間,比重在1.10~1.15 g/cm3之間。
2)注射工藝條件
干燥處理:加工前必須進(jìn)行干燥處理,濕度應(yīng)小于0.04%,建議干燥條件為90~110℃,2~4小時。
料筒溫度:230~300℃。
模具溫度:50~100℃。
注射壓力:100~200MPa。
注射速度:高速注射。
綜合考慮上述材料的化學(xué)物理特性和注射工藝條件,選擇材料為PC/ABS(聚碳酸酯和丙烯腈—丁二烯—苯乙烯共聚物的混合物)。
2.3 生產(chǎn)批量要求
該塑件為大批量,自動化生產(chǎn),因此要求模具有較高的注塑效率,澆注系統(tǒng)要能自動脫模,可以采用潛伏式澆口自動脫模結(jié)構(gòu),型腔分布采用一模兩腔,從而提高生產(chǎn)效率,降低生產(chǎn)成本。
2.4 塑件的成型要求
該產(chǎn)品用于電源插座上,要求具有較強(qiáng)的絕緣性。塑件表面要求光滑,不能出現(xiàn)飛邊、氣泡、裂紋、劃痕等缺陷。
2.5 塑件的結(jié)構(gòu)及成型工藝分析
1)從圖紙上分析,該塑件外形為四方殼,壁厚較均勻,為1.5mm,符合最小壁厚要求。
2)該塑件無側(cè)孔和內(nèi)凸或內(nèi)凹,不需考慮側(cè)向抽芯機(jī)構(gòu)。
3)為使塑件順利脫模,可以增設(shè)拔模角度1°~2°。
4)塑件尺寸精度等級采用未標(biāo)注公差的尺寸MT5級。
綜上所述,該塑件可以采用注射成型加工。
2.6 注射機(jī)的初步選擇
根據(jù)塑件樣品使用UG軟件創(chuàng)建插座外殼的三維數(shù)據(jù)模型(圖2-1),利用軟件自動計算出塑件的體積。根據(jù)UG軟件計算出的塑件體積為22.447cm3,查閱相關(guān)手冊,取PC/ABS的密度為ρ=1.12g/cm3,則塑件的質(zhì)量為m=ρv=1.12×22.447≈25.14g。
已知該產(chǎn)品是大批量生產(chǎn),從經(jīng)濟(jì)性及模具尺寸大小考慮,同時兼顧生產(chǎn)效率,決定采用一模兩腔。型腔分布采用對稱布置,這樣有利于澆注系統(tǒng)的排列和模具的平衡。這樣兩個塑件的體積大約為44.894cm3。
初步估算澆注系統(tǒng)凝料的體積,按塑件體積的0.6倍計算,則澆注系統(tǒng)凝料體積約為26.94 cm3。則V總=44.894+26.94=71.834 cm3,根據(jù)注射機(jī)實(shí)際注射量最好為理論注射量的60%~80%,初步選擇注塑機(jī)的型號為SZ-100/80,其主要參數(shù)見表2-1。
表2-1 SZ-100/80注塑機(jī)主要技術(shù)參數(shù)
理論注塑量
100cm3
噴嘴球半徑
10mm
最大模具厚度
300mm
注塑壓力
170MPa
拉桿間距
320×320mm
鎖模力
800kN
螺桿直徑
35mm
定位孔直徑
100mm
最小模具厚度
170mm
模板行程
305mm
塑化能力
40kg/h
注射速率
95g/s
3 模具設(shè)計
3.1 分型面的確定
分型面是模具動、定模兩部分的分界面,是型腔設(shè)計的第一步。在塑件設(shè)計階段就要考慮成型時分型面的形狀和位置,否則無法用模具成型。分型面受塑件的外觀、形狀、尺寸精度、型腔數(shù)目、排氣槽和澆口位置等因素的影響。因此,分型面的選擇是注塑模具設(shè)計中的一個關(guān)鍵因素。
分型面的選擇原則如下:
1)分型面應(yīng)位于塑件截面尺寸最大的部位。這是第一原則,否則塑件無法從型腔中順利脫出。
2)分型面的選擇應(yīng)盡可能使開模后塑件留在動模一側(cè),有利于自動化生產(chǎn)。
3)有利于保證塑件的尺寸精度。
4)有利于保證塑件的外觀質(zhì)量。
5)滿足塑件的使用要求。
6)選擇分型面時,應(yīng)將分型或抽芯距離較長、投影面積較大的一邊放在動、定模的開模方向上。
7)盡量把分型面設(shè)計在熔體流動方向的末端,便于排氣。
8)盡量避免形成側(cè)孔、側(cè)凹或側(cè)凸,以利于簡化模具結(jié)構(gòu)。
該塑件在設(shè)計時已充分考慮了上述原則,同時從塑件圖紙上可以看出該塑件的形狀、結(jié)構(gòu)較簡單不需要側(cè)向抽芯分型。
綜合以上因素的考慮,該塑件選擇的分型面如圖3-1所示。
圖3-1 塑件分型面示意圖
3.2 澆注系統(tǒng)的設(shè)計
澆注系統(tǒng)是指模具中,從注射機(jī)噴嘴開始到型腔入口位置的塑料熔體流動通道,可分為普通澆注系統(tǒng)和熱流道澆注系統(tǒng)。澆注系統(tǒng)的作用是讓塑料熔體在壓力作用下平穩(wěn)有序地進(jìn)入型腔,實(shí)現(xiàn)型腔充填。澆注系統(tǒng)的設(shè)計是否合理對塑件的外觀、內(nèi)在性能質(zhì)量、尺寸精度、模具結(jié)構(gòu)及成型周期等有直接的影響。因此,設(shè)計澆注系統(tǒng)時要充分考慮成型過程可能產(chǎn)生的缺陷和填充條件,作具體全面的分析。
澆注系統(tǒng)的設(shè)計一般遵循如下基本原則:
1)適應(yīng)塑料的成型工藝性。
2)流道盡可能短,以減少熱量和壓力的損失,減少塑料的用量,提高生產(chǎn)效率,降低生產(chǎn)成本。
3)流道盡可能采用平衡式布置,以便塑料熔體能平衡地充填塑件各部分或各型腔,使塑件收縮均勻,提高塑件的精度。
4)有利于氣體排出。
5)避免塑件出現(xiàn)各種缺陷。
6)保證塑件的外觀質(zhì)量。
7)盡可能地提高生產(chǎn)效率,降低成本。
3.2.1 主流道的設(shè)計
主流道是指從注射機(jī)噴嘴和模具接觸面開始,到分流道為止的熔體的流動通道,形狀一般為圓錐形。主流道的形狀和尺寸會影響塑料熔體的流動速度和填充時間。主流道過大會造成回收凝料過多,冷卻時間加長,熔體熱量損失也會增大,造成成型困難。主流道過小則會增加流動阻力,也不利于成型。因此,主流道的設(shè)計應(yīng)注意以下幾點(diǎn):
1)為了減少熔體的壓力和熱量損失,減少凝料,降低塑料成本,同時縮短成型周期,主流道越短越好。
2)為了便于主流道凝料順利脫出和熔體的順利流入,主流道一般設(shè)計成圓錐形。
3)為了保證主流道與注射機(jī)噴嘴之間不產(chǎn)生溢料,主流道口尺寸與注射機(jī)噴嘴要有配合要求。
4)為了便于維護(hù)和更換,主流道應(yīng)設(shè)計在澆口套內(nèi)。
5)為了在成型時模具平穩(wěn)、注塑平穩(wěn),主流道應(yīng)盡量和模具在一條中心線上。
3.2.1. 1 主流道尺寸
主流道小端直徑 d1=d+(0.5~1)mm=4+(0.5~1)mm=4.5~5mm,取d1=4.5mm。
式中:d——注塑機(jī)噴嘴口直徑,mm。
主流道球面半徑 r1=r+(1~2)mm=10+(1~2)mm=11~12mm,取r1=11mm。
式中:r——注塑機(jī)噴嘴球半徑,mm。
球面配合高度 h=3~8mm,取h=3mm。
主流道錐角α=2°~5°,取α=3°。
3.2.1. 2 主流道襯套的形式
注塑成型時,主流道小端入口與注塑機(jī)噴嘴反復(fù)接觸,且主流道受塑料熔體的沖刷嚴(yán)重,屬于易損件,對材料要求較嚴(yán)格,因此模具主流道部分設(shè)計成可拆卸更換的主流道襯套形式即澆口套,以便選用優(yōu)質(zhì)鋼材進(jìn)行單獨(dú)加工和熱處理,常采用碳素工具鋼(如T8A、T10A等)材料制造,熱處理淬火硬度為53HRC~57HRC。常用的澆口套分為澆口套、定位圈整體式和澆口套與定位圈單獨(dú)分開兩種形式,本設(shè)計采用后一種形式。由于主流道襯套與定位圈均屬于注射模具的通用件,為了方便更換,在此參照《現(xiàn)代注塑模具設(shè)計實(shí)用技術(shù)手冊》查表GB/T4169.19—2006選取標(biāo)準(zhǔn)澆口套20×80 GB/T4169.19—2006,其規(guī)格尺寸見圖3-2;查表GB/T4169.18—2006選取標(biāo)準(zhǔn)定位圈100 GB/T4169.18—2006,其規(guī)格尺寸見圖3-3。
圖3-2澆口套
圖3-3定位圈
3.2.1. 3 主流道襯套的固定
因?yàn)椴捎玫臑榉珠_式,所以用定位圈配合固定在模具的面板上。主流道襯套與定模座板間配合采用H7/m6的過渡配合,與定位圈采用H9/f9的間隙配合。具體固定形式如圖3-4。
圖3-4澆口套的固定形式
3.2.2 冷料穴和拉料桿的設(shè)計
冷料穴的作用是儲存塑料熔體料流的前端冷料,避免這些冷料進(jìn)入型腔影響熔體充填速度和成型件的質(zhì)量。同時冷料穴還起到在開模時將主流道中的冷料拉出附在動模一邊,以便脫模時隨塑件推出模外的作用。
3.2.2. 1 主流道冷料穴
主流道冷料穴開設(shè)在主流道對面的動模板上,本設(shè)計采用如圖3-5推桿形式的倒錐形冷料穴,有利于實(shí)現(xiàn)自動化生產(chǎn)。
圖3-5 倒錐形冷料穴
3.2.2. 2 分流道冷料穴
分流道冷料穴一般設(shè)置在分流道末端沿料流方向上,其長度為分流道直徑的1~1.5倍。
3.2.3 分流道的設(shè)計
分流道是指主流道末端與澆口之間的一段塑料熔體的流動通道,起作用是改變?nèi)垠w流動方向,使熔體平穩(wěn)均衡地分布到各個型腔。
分流道的設(shè)計要點(diǎn):
1)在保證塑料熔體能順利充滿型腔的前提下,分流道截面積盡可能小,長度盡量短,轉(zhuǎn)折處應(yīng)以圓弧過度。
2)分流道較長時,應(yīng)在末端開設(shè)冷料穴。
3)分流道可單獨(dú)開設(shè)在定模板或動模板上,也可以同時開設(shè)在動、定模板上,合模后形成分流道截面形狀。?
4)分流道與澆口連接處應(yīng)加工成斜面,并用圓弧過度。
分流道的截面形狀有圓形、梯形、U形、半圓形、正六邊形及矩形等,常用的形狀為圓形、梯形、U形。該塑件為矩形殼體,體積不大,形狀也不復(fù)雜,且壁厚均勻,但長度較長,因此考慮采用兩點(diǎn)進(jìn)料的方式,縮短分流道的長度,有利于塑件的成型和外觀質(zhì)量的保證。從熔體流動性及壓力和熱量損失方面考慮,采用截面形狀為圓形的分流道,按平衡式對稱布置。分流道的直徑一般在Φ(3~10)mm范圍內(nèi)。在本設(shè)計中,參考相關(guān)的手冊,結(jié)合塑件的長度和壁厚,選擇分流道直徑Φ=8mm。分流道的內(nèi)表面要求不是很高,一般取Ra=1.6μm即可,這樣可以在分流道摩擦阻力的作用下使料流外層的流動小些,使分流道的冷卻皮層固定,有利于對熔體塑料的保溫。
3.2.4 澆口的設(shè)計
澆口是指分流道和型腔之間的一段細(xì)短流道(直接交口除外),是澆注系統(tǒng)中最關(guān)鍵的部分,也是澆注系統(tǒng)的最后部分。其作用是使分流道的塑料熔體產(chǎn)生加速,以快速充滿型腔,澆口的設(shè)計或選擇是否合理,直接關(guān)系到塑件能否完好地注射成型。
在本設(shè)計中,該模具屬中小型塑件的多型腔模具,同時,對外觀有要求較高,所以從側(cè)澆口和潛伏式澆口中進(jìn)行選擇。其中,側(cè)澆口的截面積小,容易去除澆口,而且形狀簡單,易于加工,并能隨時調(diào)整澆口尺寸,易于實(shí)現(xiàn)各型腔的澆口平衡,改善注射條件。但注塑壓力損失大,塑件和澆口不能自行分離,殼形零件排氣不良,容易形成熔接痕、縮孔、氣泡等缺陷。潛伏式澆口的位置可選擇在制品的外表面、側(cè)表面、端面或背面等,且澆口截面面積小,不會損傷制品外表面。同時潛伏式澆口用兩板式一次開模即可自行切斷澆口凝料,提高了注塑效率,且模具結(jié)構(gòu)較簡單,降低了模具造價。但澆口壓力損失較大,對脆性材料不適用。
綜合以上所述本次設(shè)計采用潛伏式澆口,查閱現(xiàn)代注塑模具設(shè)計實(shí)用技術(shù)手冊,選擇如圖3-6所示的拉切式澆口的結(jié)構(gòu)形式,其幾何形狀及參數(shù)如圖3-7所示。澆口直徑一般取在Φ0.8~2mm之間,本模具取d=1.5mm。
圖3-6 澆口形式圖 圖3-7 澆口幾何形狀及參數(shù)
3.3 成型零件的設(shè)計
成型零件是指直接與塑料熔體接觸構(gòu)成塑件形狀的零件,包括凸模、凹模、成型桿、螺紋型環(huán)和螺紋型芯等,其中凹模是用來成型塑件的外形,凸模是用來成型塑件的內(nèi)部形狀。因此,成型零件的設(shè)計是注塑模具設(shè)計最重要的組成部分。
3.3.1 成型零件工作尺寸的計算
成型零件的工作尺寸主要包括:凸、凹模的徑向尺寸和高度(深度)尺寸,以及中心距(位置)尺寸等,設(shè)計時要根據(jù)塑件的尺寸與精度來確定。而影響塑件尺寸精度的因素有很多,主要包括以下三個方面:
1)模具成型零件的制造誤差。通常模具成型零件的制造公差可取塑件尺寸公差的1/6~1/3。
2)塑件的收縮率變化。由于影響塑件成型后的收縮變化有很多種因素,因此,計算時一般按平均收縮率來確定,即(3-1)
式中:——平均收縮率
——最大收縮率
——最小收縮率
3)成型零件磨損。
模具工作尺寸的計算方法一般有兩種:平均值法和極限條件法。前一種方法計算比較方便,但不適用于精密塑件的模具設(shè)計;后一種計算較復(fù)雜,但能保證塑件的公差在規(guī)定范圍內(nèi)。
結(jié)合本設(shè)計的塑件,不是屬于精密塑件,因此采用平均值法計算。PC/ABS的收縮率在0.4%~0.6%之間,因此按平均收縮率0.5%計算,塑件的精度等級為MT5, 模具成型零件的制造公差取塑件尺寸公差的1/4。成型零件尺寸的計算如表3-1所示。
表3-1成型零件尺寸的計算
尺寸類別
計算公式
塑件標(biāo)注尺寸
塑件尺寸公差(按MT5級精度)
成型零件
工作尺寸
徑向尺寸
凹模徑向尺寸
:凹模徑向尺寸(mm)
:塑料平均收縮率(%)
:塑件徑向公稱尺寸(mm)
x:隨塑件精度和尺寸的變化而變化,一般在0.5~0.8之間取,中小件取3/4。
Δ:塑件公差值(mm)
:凹模制造偏差(mm)
160.0
64.0
62.6
1.2
24.0
2.0
Φ5.0
Φ7.0
R1.5
R0.5
R3.5
R2.5
R7.0
R8.0
R5.0
型芯徑向尺寸
:型芯徑向尺寸(mm)
:塑料平均收縮率(%)
:塑件徑向公稱尺寸(mm)
x:一般在0.5~0.8之間取,一般中小件取3/4。
Δ:塑件公差值(mm)
:型芯制造偏差(mm)
157.0
61.0
3.5
7.5
Φ2.5
Φ3.0
Φ5.0
R4.0
R6.5
軸向尺寸
凹模深度尺寸
:凹模深度尺寸(mm)
:塑件高度公稱尺寸(mm)
x:隨塑件精度和尺寸的變化而變化,一般在0.5~0.7之間取,中小件取2/3。
其余符合意義同上。
13.0
1.8
6.0
5.0
10.0
8.0
3.0
型芯高度尺寸
:型芯高度尺寸(mm)
:塑件孔深度公稱尺寸(mm)
其余符合意義同上。
11.5
4.0
5.5
10.0
3.5
11.0
中心距尺寸
:模具中心距尺寸(mm)
:塑件中心距尺寸(mm)
其余符合意義同上。
50.0
50.0±0.32
50.25±0.08
146.0
146.0±0.72
146.73±0.18
48.0
48.0±0.32
48.24±0.08
41.0
41.0±0.32
41.21±0.08
32.0
32.0±0.28
32.16±0.07
25.0
25.0±0.25
25.13±0.06
3.5
3.5±0.12
3.52±0.03
6.7
6.7±0.14
6.73±0.04
12.0
12.0±0.16
12.06±0.04
5.8
5.8±0.12
5.83±0.03
4.0
4.0±0.12
4.02±0.03
3.3.2 成型零件的結(jié)構(gòu)設(shè)計
由于凸、凹模直接與高溫、高壓的塑料熔體接觸,并且脫模時反復(fù)與塑件摩擦,因此,要求凸、凹模具有足夠的剛度、強(qiáng)度、耐磨性、耐腐蝕性和較低的表面粗糙度(一般要求在Ra0.4μm以下)以及足夠的硬度(一般通過熱處理使其硬度達(dá)到40HRC以上)。
3.3.2.1 凹模的結(jié)構(gòu)設(shè)計
1)凹模的結(jié)構(gòu)形式
凹模是成型塑件外表面的主要零件,其結(jié)構(gòu)形式有多種,主要有:整體式、整體嵌入式、局部鑲嵌式、組合式等。其中,整體式強(qiáng)度高、不易變形,但加工較困難,熱處理變形大且浪費(fèi)貴重材料,只適用于于小批量生產(chǎn),小型且形狀簡單的塑件;整體嵌入式采用H7/m6的過渡配合嵌入模板中,這種形式加工拆裝方便,熱處理變形小,且便于更換和維修,多用于多型腔模。結(jié)合本設(shè)計的塑件,塑件不大,形狀不太復(fù)雜,大批量生產(chǎn),采用一模兩腔,因此凹模采用整體嵌入式。
2)凹模壁厚和底板厚度計算
凹模應(yīng)具有足夠的強(qiáng)度和剛度來承受在成型過程中塑料熔體的高壓作用。如果凹模側(cè)壁和底板厚度過小,可能因剛度不足導(dǎo)致型腔擴(kuò)大而發(fā)生翹曲變形,導(dǎo)致溢料飛邊,使塑件尺寸精度降低并影響脫模;也可能因強(qiáng)度不夠而產(chǎn)生塑性變形甚至損壞。對于小尺寸的型腔,主要矛盾是強(qiáng)度不足,因此凹模應(yīng)滿足相應(yīng)的強(qiáng)度條件。在此按強(qiáng)度條件來計算凹模的壁厚和底板厚度。
按強(qiáng)度計算的整體式矩形凹模壁厚計算公式:當(dāng)<0.41時, (3-2)
式中:S:凹模壁厚(mm)
h:凹模深度(mm)
p:模具型腔內(nèi)最大的熔體壓力(MPa),由型腔壓力估算公式確定,一般是30~50MPa。
:模具強(qiáng)度計算的許用應(yīng)力(MPa),一般中碳鋼=160MPa,預(yù)硬化模具鋼=300MPa。
則凹模壁厚mm,取S=13mm。
按強(qiáng)度計算的整體式矩形凹模底板厚度計算公式:(3-3)
式中:T:凹模底板厚度(mm)
b:矩形凹模短邊長度(mm)
其余符號意義同上。
則凹模底板厚度mm,取T=25mm。
3.3.2.2 型芯的結(jié)構(gòu)設(shè)計
型芯是用于成型塑件內(nèi)表面的零件,按結(jié)構(gòu)形式可分為整體式和組合式。在本設(shè)計的塑件中需要成型塑件中間的兩個小圓柱孔,為了加工方便以及更換,采用組合式,在大型芯中裝入兩個小圓型芯鑲拼而成。
3.4 脫模機(jī)構(gòu)的設(shè)計
脫模機(jī)構(gòu)是指將注塑成型后的塑件和澆注系統(tǒng)凝料從模具中脫出的機(jī)構(gòu),又稱為頂出機(jī)構(gòu)或推出機(jī)構(gòu)。脫模機(jī)構(gòu)一般由推出、復(fù)位和導(dǎo)向三大部件組成。設(shè)計脫模機(jī)構(gòu)時,要根據(jù)塑件的形狀、復(fù)雜程度和注塑機(jī)的推出結(jié)構(gòu)形式來確定,一般應(yīng)遵循以下幾點(diǎn)原則:
1)盡量使塑件留在動模一側(cè),以便借助開模力驅(qū)動脫模裝置來完成脫模。
2)保證塑件能夠順利脫出,不變形或不損壞。
3)合模時脫模機(jī)構(gòu)應(yīng)能正確復(fù)位。
4)合理選擇脫模方式,保證塑件可靠脫模。
5)脫模機(jī)構(gòu)盡量簡單,脫模準(zhǔn)確、可靠、靈活,且具有足夠的強(qiáng)度和剛度來克服脫模力。
3.4.1 脫模力的計算
脫模力的計算公式 (3-4)
式中::脫模力(N)
A1:塑件包緊型芯的側(cè)面積(mm2)
A2:型芯端面面積
P:塑件對型芯單位面積上包緊力,一般情況下,模內(nèi)冷卻的塑件,p值為8~12 MPa;模外冷卻的塑件,p值為24~39 MPa
:塑件與型芯之間的摩擦系數(shù)(塑料與鋼的摩擦系數(shù)約為0.1~0.3)
α:脫模斜度(1~2°)
則KN
故兩腔的脫模力為2=13.2 KN。
3.4.2 脫模機(jī)構(gòu)的選擇
根據(jù)塑件的形狀及復(fù)雜程度,本模具采用簡單的一次脫模機(jī)構(gòu)。參照《現(xiàn)代注塑模具設(shè)計實(shí)用技術(shù)手冊》查表GB/T 4169.1-2006選用標(biāo)準(zhǔn)推桿5×80 GB/T 4169.1-2006;復(fù)位時選擇復(fù)位桿復(fù)位,查表GB/T 4169.13-2006選用標(biāo)準(zhǔn)復(fù)位桿10×100 GB/T 4169.13-2006。
3.5 冷卻系統(tǒng)的設(shè)計
冷卻系統(tǒng)的設(shè)計原則:
1)盡量使冷卻管道至型腔表面的距離相等。
2)注意水管的密封,避免漏水。
3)澆口處加強(qiáng)冷卻。
4)降低入水與出水的溫度差。
5)在模具結(jié)構(gòu)允許的條件下,冷卻管道的直徑盡量大,回路盡量多。
6)盡量避免接近塑件熔接痕的產(chǎn)生位置。
在本設(shè)計的模具中,冷卻管道直徑為Φ8mm。
3.6 排氣系統(tǒng)的設(shè)計
由于該模具屬于小型模具,排氣量較小,可利用分型面和頂桿等間隙進(jìn)行排氣,不需要單獨(dú)開設(shè)排氣槽。
3.7 標(biāo)準(zhǔn)模架的選擇
根據(jù)型腔的數(shù)量以及塑件的尺寸,參考《現(xiàn)代注塑模具設(shè)計實(shí)用技術(shù)手冊》查表9-27選擇標(biāo)準(zhǔn)模架A 2740—45×40×80 GB/T 12555—2006,模架采用壓板固定。
3.8 校核計算
3.8.1 推桿強(qiáng)度的校核
在本套模具中每個型腔擬用18根直徑為Φ5mm的推桿,
則,強(qiáng)度校核MPa<[σ] (3-5)
式中:
Q:脫模力(N)
σ:推桿所受的應(yīng)力(MPa)
[σ]:推桿材料的許用應(yīng)力(MPa)
故推桿可以滿足使用要求。
3.8.2 模具與注塑機(jī)的部分相關(guān)尺寸校核
3.8.2. 1最大注射量的校核
(3-6)
式中:
n:型腔數(shù)目
V1:單個塑件的體積(cm3)
V2:澆注系統(tǒng)凝料的塑料體積(cm3)
V:注塑機(jī)最大注射量(cm3)
K:注射機(jī)最大注射量的利用系數(shù),可取0.7~0.9。
則,2×22.447+26.94=71.834 cm3<0.9×100=90 cm3
3.8.2. 2鎖模力的校核
P腔A分≤F鎖 (3-7)
式中:
P腔:型腔內(nèi)塑料熔體的平均壓力,通常取20~40 MPa
A分:塑件和澆注系統(tǒng)在模具分型面上的總投影面積(mm2)
F鎖:注塑機(jī)的額定鎖模力(N)
則,30×21130=633900 N<800000 N
3.8.2. 3模具的厚度和外形尺寸校核
Hmin≤Hm≤Hmax (3-8)
式中:
Hm:模具厚度(mm)
Hmin:注塑機(jī)允許的模具最小厚度(mm)
Hmax:注塑機(jī)允許的模具最大厚度(mm)
Hm=H4+A+B+H2+C+H1=25+45+40+40+80+25=255mm
式中:
H4:定模座板厚度(mm)
H2:支撐板厚度(mm)
H1:動模座板厚度(mm)
A:定模扳厚度(mm)
B:動模板厚度(mm)
C:墊塊高度(mm)
則,170mm<255mm<300mm
拉桿間距為320mm×320mm小于模架的長和寬320mm×400mm,不符合要求。
3.8.2. 4開模行程的校核
S≥H1+H2+(5~10)mm (3-9)
式中:
H1:塑件脫模距離,一般為型芯的高度(mm)
H2:包括澆注系統(tǒng)在內(nèi)的塑件高度(mm)
S:注塑機(jī)最大開模行程(mm)
則,80mm <9.7+70+(5~10)mm
拉桿間距和開模行程均不符合要求,因此需重新選擇注塑機(jī)。重新選擇注塑機(jī)的型號為SZ-160/100,其主要參數(shù)見表3。
表3-2 SZ-160/100注塑機(jī)主要技術(shù)參數(shù)
理論注塑量
160cm3
噴嘴球半徑
15mm
模具最大厚度
300mm
注塑壓力
150MPa
拉桿間距
345×345mm
鎖模力
1000kN
螺桿直徑
40mm
定位孔直徑
100mm
模具最小厚度
200mm
模板行程
325mm
塑化能力
45kg/h
注射速率
105g/s
重新校核開模行程
100mm>9.7+70+(5~10)mm
到此校核計算完成,模具的設(shè)計工作也完成。
4 塑件的模流分析
4.1 Autodesk Moldflow軟件介紹
Autodesk Moldflow軟件是如今全球塑料注塑成型行業(yè)中使用最廣泛、技術(shù)最先進(jìn)的軟件。它為用戶提供了強(qiáng)大的分析功能、可視化功能和項(xiàng)目管理工具。運(yùn)用Moldflow軟件可以模擬整個注塑成型過程以及這一過程對成型產(chǎn)品的影響,由此可以優(yōu)化塑件的設(shè)計、生產(chǎn)和質(zhì)量,優(yōu)化模具結(jié)構(gòu)以及注射工藝參數(shù)等。
歐特克公司于2009年7月7日推出了最新版本的Autodesk Moldflow 2010軟件包,該軟件包包括了AMI、AMA、MDL和MSA等一系列產(chǎn)品。其中,最常用的是AMI。AMI提供了中性面、雙層面和三維三類網(wǎng)格類型供用戶選擇,其中雙面網(wǎng)格是最常用的。AMI中可進(jìn)行的分析類型有:澆口位置、成型窗口、快速充填、充填、流動、冷卻、翹曲、收縮、流道平衡、應(yīng)力和工藝優(yōu)化等。
4.2 塑件模型的導(dǎo)入與網(wǎng)格劃分
Moldflow支持的文件格式有很多種,最常用的有STL和IGS,其中STL應(yīng)用更為廣泛。STL文件的優(yōu)點(diǎn)是在精度的控制方面比較好,并且不會丟失源文件的特征;缺點(diǎn)是要求對原part文件的點(diǎn)、線、面必須是完好無損的,否則無法導(dǎo)出STL文件。IGS的優(yōu)點(diǎn)是網(wǎng)格的匹配率比STL要高一些;缺點(diǎn)是在原part文件有殘破缺陷的情況下依然可以導(dǎo)出,這會造成一些特征的丟失。因此,選擇由UG導(dǎo)出塑件模型的STL格式,然后再導(dǎo)入Moldflow進(jìn)行網(wǎng)格劃分。
網(wǎng)格類型選擇雙層面,全局網(wǎng)格邊長為1mm,網(wǎng)格劃分得越細(xì)網(wǎng)格的匹配率越高,但在后續(xù)的分析中對計算機(jī)的計算能力要求也就越高。劃分網(wǎng)格后進(jìn)行網(wǎng)格統(tǒng)計,統(tǒng)計情況如圖4-1所示,可以看出網(wǎng)格匹配百分比高達(dá)95.4%,但最大縱橫比偏高,可以通過網(wǎng)格修復(fù)來降低縱橫比。
圖4-1網(wǎng)格統(tǒng)計
經(jīng)過網(wǎng)格修復(fù)后最大縱橫比降到了6,網(wǎng)格統(tǒng)計情況如圖4-2所示
圖4-2修復(fù)后的網(wǎng)格統(tǒng)計
4.3 澆口位置分析
澆口位置模塊能夠自動分析出最佳澆口的位置。最佳的澆口位置可以保證平衡的流動路徑和均勻的壓力分布,合理地選擇澆口的數(shù)量與位置可以使注塑壓力和保壓壓力有效傳遞,達(dá)到預(yù)期的產(chǎn)品成型效果。
本次的澆口位置分析模擬選擇由系統(tǒng)提供的制造商為SABIC Innovative Plastics US,LLC的ABS+PC材料,推薦的工藝如圖4-3所示。將澆口數(shù)量設(shè)置為2。分析得出的2個最佳澆口位置如圖4-4所示。
圖4-3材料的推薦工藝
圖4-4最佳澆口位置
澆口位置分析出來的澆口位置可以作為澆口位置的參考,但不一定就是模具設(shè)計的澆口位置,模具澆口位置的設(shè)置要綜合考慮塑件的外觀質(zhì)量、溶體的流動和模具制造等方面的因素。分析得出的澆口位置在塑件的內(nèi)表面中心線上,這對于模具的設(shè)計及加工制造難度很大,因此將澆口位置偏移到側(cè)面采用潛伏式澆口,澆口位置分布如圖4-5所示。
圖4-5澆口位置分布
4.4 成型窗口分析
成型窗口分析的作用是,用于定義能夠生產(chǎn)合格產(chǎn)品的成型工藝條件范圍。在這個范圍內(nèi)可以生產(chǎn)出質(zhì)量較好的塑件。通過成型窗口分析可以得到較佳的模具溫度和熔體溫度等一些成型參數(shù)值。
通過成型窗口分析得出推薦的模具溫度為98.00℃,推薦的熔體溫度為293.00℃推薦的注射時間為0.4898 s。
成型窗口分析結(jié)果如下:
4.4.1 質(zhì)量(成型窗口):XY圖
圖4-6質(zhì)量(成型窗口)XY圖
從圖4-6中可以看出模具溫度為98.00℃,熔體溫度為293.00℃,在注射時間為0.4898 s的時候產(chǎn)品質(zhì)量的系數(shù)達(dá)到0.9080,說明產(chǎn)品的質(zhì)量是最好的。
4.4.1 區(qū)域(成型窗口):2D幻燈片圖
圖4-7區(qū)域(成型窗口)2D幻燈片圖
從圖4-7中可以看出區(qū)域全部為黃色,說明當(dāng)前的澆注系統(tǒng)和所選的塑膠材料很難調(diào)出質(zhì)量很好的產(chǎn)品,雖然黃色表示當(dāng)前所選的工藝可行,產(chǎn)品不會發(fā)生短射,最高注射壓力不會超出機(jī)臺的注射壓力,產(chǎn)品可以注塑成型,但產(chǎn)品的質(zhì)量無法達(dá)到最高品質(zhì)。出現(xiàn)這種情況可以通過不同的方面改進(jìn)成型的狀態(tài),比如選用流動性更好的塑膠材料、修改產(chǎn)品的局部特征、加大澆口尺寸和流道尺寸、更換澆口的類型、縮短流道的長度和降低壓降等來保證產(chǎn)品的質(zhì)量。
4.5 充填分析
充填分析可以對塑料熔體從開始進(jìn)入型腔到充滿型腔的整個過程進(jìn)行模擬。根據(jù)模擬結(jié)果,可以得到塑料熔體在型腔中的充填行為報告,主要是查看產(chǎn)品的充填行為是否合理,充填是否平衡,能否完成對產(chǎn)品的完全填充等,目的是為了獲得最佳的澆注系統(tǒng)設(shè)計,也是為了獲得最佳的保壓設(shè)置,從而盡可能地降低由保壓引起的產(chǎn)品收縮、翹曲等缺陷。充填分析的結(jié)果包括充填時間、壓力、流動前沿溫度、剪切速率、氣穴、熔接痕等。
本次充填分析的模具溫度和熔體溫度采用由成型窗口分析得出的溫度值,其他工藝參數(shù)采用默認(rèn)值。通過充填分析得出充填時間為0.96 s的時候,充填的體積達(dá)到98.27%,此時速度與壓力發(fā)生轉(zhuǎn)換,后面全部由壓力來填充完成。最大的注塑壓力發(fā)生在0.9643 s壓力為40.4MPa,最大的鎖模力為39.32tonne,說明所選的注塑機(jī)的壓力和鎖模力是足夠的。推薦的螺桿速度曲線如圖4-8所示,這個對于調(diào)節(jié)分段注塑是很有幫助的。
圖4-8螺桿速度曲線
充填分析結(jié)果如下:
4.5.1 充填時間如圖4-9
圖4-9充填時間
從圖4-9中可以看出充填時間為1.005 s,通過動態(tài)查看可以看出兩個型腔的充填是平衡的,充填的狀態(tài)是比較好的。
4.5.2 速度/壓力切換時的壓力如圖4-10
圖4-10速度/壓力切換時的壓力
從圖4-10中可以看出速度與壓力切換時的壓力為40.40MPa,灰色區(qū)域表示速度/壓力切換時壓力為0,這些灰色區(qū)域是靠最后的壓力來充填完成的,而有顏色的區(qū)域是靠前面的速度來充填完成。
4.5.3 流動前沿溫度如圖4-11
圖4-11流動前沿溫度
圖4-12
流動前沿溫度是塑料熔體流到模具中每一處的溫度,模型的溫度差一般允許值為20℃。從圖4-11可以看出,塑件的整體都是呈紅色的,表示溫度值是非常好的,塑件的成型還是比較理想的。本次模擬的溫度差很大主要是由于如圖4-12藍(lán)色顯示的小區(qū)域處的塑件壁厚非常薄接近于0,塑料熔體流動受到的阻力非常大,因此出現(xiàn)了流動前沿溫度的最小值為塑料熔體的轉(zhuǎn)變溫度。這種情況可以通過修改塑件的厚度來改善,但是這個小區(qū)域并不影響塑件的整體充填和使用要求。
4.5.4 總體溫度如圖4-13
圖4-13總體溫度
從圖4-13中可以看出塑件整體是呈紅色顯示,說明整個產(chǎn)品的溫度還是比較理想,只是在壁厚較薄的地方需要注意。還要注意一點(diǎn)的是總體溫度的最大值,此溫度值不能太接近或超過塑料的降解溫度,否則塑料就會降解。圖4-13中顯示為299.2℃沒有超過圖4-3中材料的絕對最大熔體溫度333℃。
4.5.5 氣穴的分布如圖4-14
圖4-14氣穴的分布
當(dāng)材料從各個方向流向同一個節(jié)點(diǎn)時就會形成氣穴,氣穴對網(wǎng)格密度很敏感。圖4-14中粉紅色的小圈點(diǎn)表示氣穴所出現(xiàn)的位置。當(dāng)氣穴位于分型面時,氣體可以通過分型面的間隙排出;當(dāng)氣穴不是位于分型面時,可以考慮做鑲件,但盡量不要影響產(chǎn)品的外觀。還可以通過改變澆口位置、塑件的壁厚和注射時間、注射速度等來減少或消除氣穴。
4.5.6 熔接痕的分布如圖4-15
圖4-15熔接痕的分布
熔接痕是由于兩股匯集到一起,或一股料流分開后又合到一起而產(chǎn)生的,熔接痕對網(wǎng)格的密度也是非常敏感,由于網(wǎng)格劃分的原因,有時熔接痕可能顯現(xiàn)在并不存在的地方,或有時真正有熔接痕的地方?jīng)]有顯示。從圖4-15中可以看出目前的熔接痕還是有點(diǎn)嚴(yán)重。改善熔接痕的方法有很多,可以通過提高熔體的溫度和注射速度以最快的時間進(jìn)行充填,以及改變注射壓力、保壓壓力,保持排氣通暢或改變澆口數(shù)量等。
4.6 冷卻分析
冷卻分析是用于分析塑料熔體在模具內(nèi)的熱量傳遞情況,主要包括產(chǎn)品和模具的溫度,冷卻的時間等。冷卻階段對產(chǎn)品的質(zhì)量影響非常大,冷卻的好壞直接影響產(chǎn)品的表面質(zhì)量、殘余應(yīng)力和結(jié)晶等。冷卻的時間長短決定了產(chǎn)品脫模時的溫度和成型周期的長短。 冷卻分析的目的是判斷產(chǎn)品冷卻效果的優(yōu)劣,進(jìn)而優(yōu)化冷卻系統(tǒng),縮短冷卻時間從而縮短產(chǎn)品的成型周期,提高生產(chǎn)效率,提高塑件成型的質(zhì)量,降低生產(chǎn)成本。
本次冷卻分析的模具溫度和熔體溫度采用由成型窗口分析得出的溫度值,其他工藝參數(shù)采用默認(rèn)值。
冷卻分析結(jié)果如下:
4.6.1 回路冷卻液溫度如圖4-16
圖4-16回路冷卻液溫度
圖4-16中冷卻管道以不同的顏色顯示,表示各段管道中冷卻液的溫度,一般冷卻回路進(jìn)水口和出水口冷卻液的溫差不超過3℃。從圖4-16中可以看出,本次冷卻模擬分析冷卻液溫差為0.94℃,符合要求。
4.6.2 回路管壁溫度如圖4-17
圖4-17回路管壁溫度
回路管壁溫度顯示了冷卻液和模具的界面的溫度,此最高溫度不能比冷卻液入口溫度高5℃以上。從圖4-17中可以看出,本次模擬的回路管壁最高溫度比冷卻液入口溫度高6.04℃,超過了5℃,表明不太理想,需要加強(qiáng)澆口處的冷卻??梢钥紤]以下幾種方法去解決:
1)加大冷卻回路管道直徑;
2)增加冷卻液的流動速率;
3)降低冷卻液的溫度。
4.6.3 零件的最高溫度如圖4-18
圖4-18零件的最高溫度
從圖4-18中可以看出頂出時塑件的最高溫度為67.88℃。從圖4-3中可以看出,推薦的頂出溫度為110℃,即在110℃以下頂出是安全的。本塑件頂出的溫度為67.88℃,說明塑件的冷卻效率是比較好的。
4.6.4 模具溫度如圖4-19
圖4-19模具溫度
從圖4-19可以看出模具的溫度整體分布還是比較均勻,大概在35℃左右。通過檢查結(jié)果工具分別查看型芯和型腔的溫度,其溫差在3℃左右,溫差不是很大。如果模具型芯和型腔的溫差較大,則可能影響塑件的收縮不均,從而導(dǎo)致塑件翹曲變形。因此,應(yīng)盡量減小模具型芯和型腔之間的溫差。
通過以上分析,在此重新設(shè)計優(yōu)化冷卻系統(tǒng):
1)將冷卻管道深度由15mm改到20mm;
2)將型腔一側(cè)的冷卻液溫度都25℃提高到32℃。
重新設(shè)計的冷卻系統(tǒng)如圖4-20。
圖4-20重新設(shè)計的冷卻系統(tǒng)
再次進(jìn)行冷卻分析。
優(yōu)化后的冷卻分析結(jié)果如下:
4.6.5 回路冷卻液溫度如圖4-21
圖4-21回路冷卻液溫度
從圖4-21中可以看出型腔回路冷卻液的入口和出口溫差為0.54℃,型芯回路冷卻液的入口和出口溫差為1.36℃,都在3℃以內(nèi),符合要求。
4.6.6 回路管壁溫度如圖4-22
圖4-22回路管壁溫度
從圖4-22中可以看出型腔回路管壁溫度最高為36.57℃,和冷卻液入口溫度相差4.57℃,型芯回路管壁溫度最高為
收藏
編號:4459034
類型:共享資源
大?。?span id="24d9guoke414" class="font-tahoma">3.18MB
格式:ZIP
上傳時間:2020-01-07
35
積分
- 關(guān) 鍵 詞:
-
插座
底板
注塑
模具設(shè)計
cae
分析
理工
- 資源描述:
-
插座底板注塑模具設(shè)計與CAE分析(桂理工),插座,底板,注塑,模具設(shè)計,cae,分析,理工
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。