九年級數(shù)學下冊 第3章 投影與三視圖 3.3 由三視圖描述幾何體同步練習 (新版)浙教版.doc
《九年級數(shù)學下冊 第3章 投影與三視圖 3.3 由三視圖描述幾何體同步練習 (新版)浙教版.doc》由會員分享,可在線閱讀,更多相關《九年級數(shù)學下冊 第3章 投影與三視圖 3.3 由三視圖描述幾何體同步練習 (新版)浙教版.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第3章 三視圖與表面展開圖 3.3 由三視圖描述幾何體 知識點1 由三視圖描述幾何體 1.xx金華一個幾何體的三視圖如圖3-3-1所示,這個幾何體是( ) A.球 B.圓柱 C.圓錐 D.立方體 圖3-3-1 圖3-3-2 2.一個幾何體的三視圖如圖3-3-2所示,則這個幾何體是( ) A.圓錐 B.長方體 C.圓柱 D.球 3.如圖3-3-3是某個幾何體的三視圖,該幾何體是( ) A.三棱柱 B.三棱錐 C.圓柱 D.圓錐 圖3-3-3 圖3-3-4 4.某幾何體的三視圖如圖3-3-4所示,這個幾何體是( ) A.圓錐 B.圓柱 C.三棱柱 D.三棱錐 圖3-3-5 5.如圖3-3-5是由三個相同的小正方體組成的幾何體的主視圖,那么這個幾何體可以是( ) 圖3-3-6 知識點2 與三視圖相關的計算問題 圖3-3-7 6.由6個大小相同的正方體塔成的幾何體如圖3-3-7所示,比較它的主視圖、左視圖和俯視圖的面積,則( ) A.三個視圖的面積一樣大 B.主視圖的面積最小 C.左視圖的面積最小 D.俯視圖的面積最小 7.一個長方體的三視圖如圖3-3-8所示,則這個長方體的體積為( ) A.30 B.15 C.45 D.20 圖3-3-8 圖3-3-9 8.由若干個相同的小正方體組合而成的一個幾何體的三視圖如圖3-3-9所示,則組成這個幾何體的小正方體的個數(shù)是( ) A.4 B.5 C.6 D.9 圖3-3-10 9.如圖3-3-10是由若干個棱長為1的小正方體組合而成的一個幾何體的三視圖,則這個幾何體的表面積是________. 10.xx崇仁校級月考如圖3-3-11所示的是某個幾何體的三視圖. (1)說出這個立體圖形的名稱; (2)根據(jù)圖中的有關數(shù)據(jù),求這個幾何體的表面積和體積. 圖3-3-11 11.圖3-3-12是一個幾何體的三視圖,則這個幾何體是( ) 圖3-3-12 圖3-3-13 12.一個幾何體是由一些大小相同的小立方塊擺成的,其主視圖和俯視圖如圖3-3-14所示,則組成這個幾何體的小立方塊最少有( ) A.3個 B.4個 C.5個 D.6個 圖3-3-14 圖3-3-15 13.一個幾何體的主視圖和俯視圖如圖3-3-15所示,若這個幾何體最多有a個小正方體組成,最少有b個小正方體組成,則a+b的值為( ) A.10 B.11 C.12 D.13 14.如圖3-3-16是某幾何體的三視圖,則該幾何體的體積是( ) 圖3-3-16 A.18 B.54 C.108 D.216 15.如圖3-3-17所示的三棱柱的三視圖如圖3-3-18所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30,則AB的長為________cm. 圖3-3-17 圖3-3-18 16.幾何體的三視圖相互關聯(lián).某直三棱柱的三視圖如圖3-3-19所示,在△PMN中,∠MPN=90,PN=4,sin∠PMN=. (1)求BC及FG的長; (2)若主視圖與左視圖兩矩形相似,求AB的長; (3)在(2)的情況下,求直三棱柱的表面積. 圖3-3-19 17.已知一個模型的三視圖如圖3-3-20所示(單位:m). (1)請描述這個模型的形狀; (2)若制作這個模型的木料密度為360 kg/m3,則這個模型的質量是多少? (3)如果用油漆漆這個模型,每千克油漆可以漆4 m2,那么需要多少千克油漆? 圖3-3-20 詳解詳析 1.B 2.B [解析] 觀察發(fā)現(xiàn),主視圖、左視圖、俯視圖都是矩形,可以確定幾何體是直棱柱,所以這個幾何體是長方體,故選B. 3.A 4.A 5.A 6.C [解析] 分別畫出這個幾何體的主視圖、左視圖和俯視圖,假設每個正方體的棱長為1,則主視圖的面積為5,左視圖的面積為3,俯視圖的面積為4,所以左視圖的面積最小.故選C. 7.A 8.A 9.22 [解析] 由俯視圖可知左下角的兩個位置沒有擺放正方體,再結合主視圖和左視圖得到如圖,其中方框里的數(shù)字表示在這個位置所擺放的小正方體的個數(shù). 10.解:(1)根據(jù)三視圖可得:這個立體圖形是三棱柱. (2)這個幾何體的表面積為342+153+154+155=192; 體積是3415=90. 11.B [解析] 由主視圖易知,只有B選項符合. 12.B [解析] 根據(jù)主視圖與俯視圖可得,此幾何體共兩層,第一層分前后兩排,前一排共有2個立方塊,后一排有1個立方塊;第二層最少有1個立方塊,因此最少有4個,故選B. 13.C [解析] 根據(jù)主視圖可知俯視圖中第一列最高為3個,第二列最高為1個, ∴a=32+1=7,b=3+1+1=5, ∴a+b=7+5=12. 14.C [解析] 由三視圖可以看出:該幾何體是一個正六棱柱,其中底面正六邊形的邊長為6,高是2,∴該幾何體的體積為6662=108 . 15.6 16.解:(1)設Rt△PMN斜邊上的高為h,由圖可知: BC=MN,F(xiàn)G=h, ∵sin∠PMN=,PN=4, ∴MN=5,PM=3, ∴BC=5. ∵PMPN=hMN. ∴h=, ∴FG=. (2)∵矩形ABCD與矩形EFGH相似,且AB=EF,∴=, 即=,∴AB=2 (負值已舍). (3)直三棱柱的表面積為342+52 +32 +42 =12+24 . 17.解:(1)此模型由兩個長方體組成:上面的是小長方體,下面的是大長方體. (2)模型的體積=366+2.52.52=120.5(m3),模型的質量=120.5360=43380(kg). (3)模型的表面積=22.52.5+222.5+263+236+266=166.5(m2), 需要油漆:166.54=41.625(kg).- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 九年級數(shù)學下冊 第3章 投影與三視圖 3.3 由三視圖描述幾何體同步練習 新版浙教版 九年級 數(shù)學 下冊 投影 視圖 描述 幾何體 同步 練習 新版 浙教版
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.szxfmmzy.com/p-5476809.html