高考數學一輪復習 不等式選講課件 湘教版選修4-5.ppt
《高考數學一輪復習 不等式選講課件 湘教版選修4-5.ppt》由會員分享,可在線閱讀,更多相關《高考數學一輪復習 不等式選講課件 湘教版選修4-5.ppt(72頁珍藏版)》請在裝配圖網上搜索。
4 5 1含有絕對值的不等式4 5 2幾個重要不等式的證明及其應用 選修4 5不等式選講 知識點 考綱下載 絕對值不等式 幾個重要不等式的證明及其應用 通過一些簡單問題 了解證明不等式的基本方法 比較法 綜合法 分析法 4 5 1絕對值不等式 2 ax b c c 0 和 ax b c c 0 型不等式的解法 ax b c ax b c 1 若不等式 ax 2 6的解集為 1 2 則實數a等于 A 8B 2C 4D 8 解析 由 ax 2 0時 有 8 a x 4 a 由已知得 8 a 1 4 a 2 無解 當a 0時 有4 a x 8 a 由已知得4 a 1 8 a 2 a 4 故選C 答案 C 5 若不等式 x 1 x 3 a 4 a對任意的實數x恒成立 則實數a的取值范圍是 解析 當a 0時 顯然成立 當a 0時 x 1 x 3 的最小值為4 a 4 a 4 a 2 綜上可知a的取值范圍是 0 2 答案 0 2 絕對值三角不等式定理 1 該定理可以強化為 a b a b a b 它經常用于證明含絕對值的不等式 2 當ab 0時 a b a b 當ab 0時 a b a b 這兩個結論在解題時經常用到 應熟練掌握 答案 A 絕對值不等式的解法 絕對值不等式的證明 含絕對值不等式的證明題主要分兩類 一類是比較簡單的不等式 往往可通過公式法 平方法 換元法等去掉絕對值轉化為常見的不等式證明題 或利用絕對值三角不等式性質定理 a b a b a b 通過適當的添 拆項證明 另一類是綜合性較強的函數型含絕對值的不等式 往往可考慮利用一般情況成立則特殊情況也成立的思想 或利用一元二次方程的根的分布等方法來證明 1 熟練掌握絕對值不等式的基本解法 2 充分利用絕對值的幾何意義處理絕對值不等式 更直觀 簡捷 3 注意絕對值三角不等式的運用 本節(jié)內容在高考中主要考查至多含有兩個絕對值的不等式的求解問題 絕對值三角不等式和簡單的含絕對值不等式證明 其中絕對值不等式的解法是熱點 題型為填空題和解答題 難度屬中等偏易 1 2014 重慶卷 若不等式 2x 1 x 2 a2 1 2a 2對任意實數x恒成立 則實數a的取值范圍是 解析 令f x 2x 1 x 2 則 當x5 當 2 x 12時 f x 2x 1 x 2 x 3 故5 2 f x 5 當x 1 2時 f x 2x 1 x 2 3x 1 5 2 綜合 可知f x 5 2 所以要使不等式恒成立 則需a2 1 2a 2 5 2 解得 1 a 1 2 答案 1 1 2 2 2014 江西卷 x y R 若 x y x 1 y 1 2 則x y的取值范圍為 時作業(yè)4 5 1 課時作業(yè)4 5 1 4 5 2幾個重要不等式的證明及其應用 4 證明不等式的方法 1 比較法 求差比較法知道a b a b 0 ab 只要證明a b 0即可 這種方法稱為求差比較法 求商比較法由a b 0 ab 1且a 0 b 0 因此當a 0 b 0時要證明a b 只要證明a b 1即可 這種方法稱為求商比較法 2 分析法從待證不等式出發(fā) 逐步尋求使它成立的充分條件 直到將待證不等式歸結為一個已成立的不等式 已知條件 定理等 這種證法稱為分析法 即 執(zhí)果索因 的證明方法 3 綜合法從已知條件出發(fā) 利用不等式的有關性質或定理 經過推理論證 推導出所要證明的不等式成立 即 由因尋果 的方法 這種證明不等式的方法稱為綜合法 4 反證法的證明步驟第一步 作出與所證不等式相反的假設 第二步 從條件和假設出發(fā) 應用正確的推理方法 推出矛盾的結論 否定假設 從而證明原不等式成立 5 放縮法所謂放縮法 即要把所證不等式的一邊適當地放大或縮小 以利于化簡 并使它與不等式的另一邊的不等關系更為明顯 從而得到欲證不等式成立 6 數學歸納法設 Pn 是一個與自然數相關的命題集合 如果 1 證明起始命題P1 或P0 成立 2 在假設Pk成立的前提下 推出Pk 1也成立 那么可以斷定 Pn 對一切自然數成立 用基本不等式求最值 利用基本不等式求最值 實質上就是利用基本不等式進行放縮 在放縮過程中要注意兩點 一是要注意 放 或 縮 的結果是否為常數 二是要注意 放 或 縮 的過程中等號成立的條件是否滿足 方法二 不等式證明 1 比較法 比較法是證明不等式的最基本 最重要方法之一 可分為差值比較 作差法 和商值 作商法 比較 2 綜合法 從不等式的性質和有關定理 已知成立的不等式出發(fā)經過邏輯推理 最后達到要證明的結論 3 分析法 從待證的結論出發(fā) 逐步尋找使它成立的充分條件 直至找到一個明顯成立的結論 分析法要注意敘述的形式 要證A 只需證B 這里B是A成立的充分條件 分析法和綜合法是兩種思路截然相反的證明方法 分析法便于尋找解題思路 綜合法便于敘述 因而在解題中經常結合使用 1 證明不等式除了比較法 綜合法 分析法 還可運用反證法 放縮法 數學歸納法等 證明不等式時既可探索新的方法 也可一題多證開闊思路 2 運用柯西不等式的關鍵是巧妙地構造兩組數 并向柯西不等式的形式進行轉化 從近幾年全國高考命題來看 不等式的證明方法大多與其它章節(jié)習題綜合出題 單獨命題時大多是填空或選擇題 屬中檔或容易題 湖北省作為必考內容 在考試中應該有體現(xiàn) 復習時注意引起重視- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高考數學一輪復習 不等式選講課件 湘教版選修4-5 高考 數學 一輪 復習 不等式 課件 湘教版 選修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.szxfmmzy.com/p-5623633.html