高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù) 2.1 函數(shù)及其表示課件 文 北師大版.ppt
《高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù) 2.1 函數(shù)及其表示課件 文 北師大版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù) 2.1 函數(shù)及其表示課件 文 北師大版.ppt(39頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第二章函數(shù) 2 1函數(shù)及其表示 考綱要求 1 了解構(gòu)成函數(shù)的要素 會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域 了解映射的概念 2 在實(shí)際情境中 會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒?如圖像法 列表法 解析法 表示函數(shù) 3 了解簡(jiǎn)單的分段函數(shù) 并能簡(jiǎn)單應(yīng)用 函數(shù)分段不超過三段 1 函數(shù)的基本概念 1 函數(shù)的定義 給定兩個(gè)非空數(shù)集A和B 如果按照某個(gè)對(duì)應(yīng)關(guān)系f 對(duì)于集合A中的任何一個(gè)數(shù)x 在集合B中都存在唯一確定的數(shù)f x 與之對(duì)應(yīng) 那么就把對(duì)應(yīng)關(guān)系f叫作定義在集合A上的函數(shù) 記作f A B或y f x x A 此時(shí)x叫作自變量 集合A叫作函數(shù)的定義域 集合 f x x A 叫作函數(shù)的值域 2 函數(shù)的三要素是 定義域 值域和對(duì)應(yīng)關(guān)系 3 表示函數(shù)的常用方法有 解析法 列表法和圖像法 4 分段函數(shù) 若函數(shù)在其定義域內(nèi) 對(duì)于定義域內(nèi)的不同取值區(qū)間 有著不同的對(duì)應(yīng)關(guān)系 這樣的函數(shù)通常叫作分段函數(shù) 分段函數(shù)的定義域是各段定義域的并集 值域是各段值域的并集 2 函數(shù)定義域的求法 3 映射的概念兩個(gè)非空集合A和B間存在著對(duì)應(yīng)關(guān)系f 而且對(duì)于A中的每一個(gè)元素x B中總有唯一的一個(gè)元素y與它對(duì)應(yīng) 就稱這種對(duì)應(yīng)為從A到B的映射 記作f A B A中的元素x稱為原像 B中的對(duì)應(yīng)元素y稱為x的像 記作f x y 4 映射與函數(shù)的關(guān)系函數(shù)是從非空數(shù)集到非空數(shù)集的映射 該映射中的原像的集合稱為定義域 像的集合稱為值域 1 2 3 4 5 1 下列結(jié)論正確的打 錯(cuò)誤的打 1 函數(shù)是其定義域到值域的映射 2 函數(shù)y f x 的圖像與直線x 1有兩個(gè)交點(diǎn) 3 定義域相同 值域也相同的函數(shù)一定是相等函數(shù) 4 二次函數(shù)y x2 1的值域可以表示為 y y x2 1 x R 即為 y y 1 5 分段函數(shù)是由兩個(gè)或幾個(gè)函數(shù)組成的 1 2 3 4 5 2 函數(shù)的定義域?yàn)?A 1 1 B 0 1 C 1 0 D 1 0 0 1 答案 解析 1 2 3 4 5 3 設(shè)f g都是從A到A的映射 其中A 1 2 3 其對(duì)應(yīng)關(guān)系如下表 則f g 3 等于 A 1B 2C 3D 不存在 答案 解析 1 2 3 4 5 4 下列函數(shù)中 與函數(shù)y x相等的是 答案 解析 1 2 3 4 5 答案 解析 1 2 3 4 5 自測(cè)點(diǎn)評(píng)1 由于映射中的兩個(gè)集合是非空集合 函數(shù)中的兩個(gè)集合是非空數(shù)集 所以函數(shù)是特殊的映射 2 判斷兩個(gè)函數(shù)是不是相等函數(shù) 關(guān)鍵是看定義域和對(duì)應(yīng)關(guān)系是否相同 3 求分段函數(shù)的函數(shù)值 要依據(jù)自變量所屬的區(qū)間 選擇對(duì)應(yīng)關(guān)系求解 當(dāng)自變量不確定時(shí) 需分類討論 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 考點(diǎn)1函數(shù)的基本概念例1以下給出的同組函數(shù)中 相等函數(shù)是 3 f1 y 2x f2 如圖所示 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 思考 怎樣判斷兩個(gè)函數(shù)相等 解題心得 兩個(gè)函數(shù)是否相等 取決于它們的定義域和對(duì)應(yīng)關(guān)系是否相同 只有當(dāng)兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全相同時(shí) 才相等 另外 函數(shù)的自變量習(xí)慣上用x表示 但也可用其他字母表示 如 f x 2x 1 g t 2t 1 h m 2m 1均相等 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 對(duì)點(diǎn)訓(xùn)練1有以下判斷 函數(shù)y f x 的圖像與直線x 1的交點(diǎn)最多有1個(gè) f x x2 2x 1與g t t2 2t 1相等 若f x x 1 x 則其中正確判斷的序號(hào)是 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 考點(diǎn)2求函數(shù)的定義域例2 1 2015杭州模擬 函數(shù)的定義域?yàn)?A 3 0 B 3 1 C 3 3 0 D 3 3 1 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 2 函數(shù)的定義域?yàn)?A 2 3 B 2 4 C 2 3 3 4 D 1 3 3 6 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 思考 已知函數(shù)解析式 如何求函數(shù)的定義域 解題心得 1 函數(shù)的定義域是使解析式中各個(gè)部分都有意義的自變量的取值集合 求解時(shí) 把自變量的限制條件列成一個(gè)不等式 組 不等式 組 的解集就是函數(shù)的定義域 解集要用集合或者區(qū)間表示 2 由實(shí)際問題求得的函數(shù)定義域 除了要考慮函數(shù)解析式有意義外 還要使實(shí)際問題有意義 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 對(duì)點(diǎn)訓(xùn)練2 1 函數(shù)f x log2 x2 2x 3 的定義域是 A 3 1 B 3 1 C 3 1 D 3 1 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 考點(diǎn)3求函數(shù)的解析式例3 1 已知 lgx 求f x 2 已知f x 是二次函數(shù) 且f 0 2 f x 1 f x x 1 求f x 3 已知求f x 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 思考 求函數(shù)解析式有哪些基本的方法 解題心得 函數(shù)解析式的求法 1 待定系數(shù)法 若已知函數(shù)的類型 如一次函數(shù) 二次函數(shù) 可用待定系數(shù)法 2 換元法 已知復(fù)合函數(shù)f g x 的解析式 可用換元法 此時(shí)要注意新元的取值范圍 3 方程思想 已知關(guān)于f x 與或f x 的表達(dá)式 可根據(jù)已知條件再構(gòu)造出另外一個(gè)等式組成方程組 通過解方程組求出f x 提醒 因?yàn)楹瘮?shù)的解析式相同 定義域不同 則為不相同的函數(shù) 因此求函數(shù)的解析式時(shí) 如果定義域不是R 一定要注明函數(shù)的定義域 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 2 已知f x 是一次函數(shù) 且滿足3f x 1 2f x 1 2x 17 則f x 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 3 已知f x 滿足2f x 3x 則f x 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 考點(diǎn)4分段函數(shù) 多維探究 類型一分段函數(shù)求值問題 思考 求某一自變量的函數(shù)值 如何選取函數(shù)的解析式 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 類型二分段函數(shù)與方程的交匯問題例5已知實(shí)數(shù)a 0 函數(shù)若f 1 a f 1 a 則a的值為 思考 求含有參數(shù)的自變量的函數(shù)值 如何選取函數(shù)解析式 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 類型三分段函數(shù)與不等式的交匯問題例6設(shè)函數(shù)則使得f x 2成立的x的取值范圍是 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 思考 如何選取由分段函數(shù)構(gòu)成的不等式中函數(shù)的解析式 解題心得 分段函數(shù)問題的求解策略 1 分段函數(shù)的求值問題 應(yīng)首先確定自變量的值屬于哪個(gè)區(qū)間 然后選定相應(yīng)的解析式代入求解 2 對(duì)求含有參數(shù)的自變量的函數(shù)值 如果不能確定自變量的范圍 應(yīng)采取分類討論 3 解由分段函數(shù)構(gòu)成的不等式 一般要根據(jù)分段函數(shù)的不同分段區(qū)間進(jìn)行分類討論 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 對(duì)點(diǎn)訓(xùn)練4 1 設(shè)函數(shù)則f 2 f log212 A 3B 6C 9D 12 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 3 2015陜西榆林二模 已知?jiǎng)t使f x 1成立的x的取值范圍是 答案 解析 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 1 在判斷兩個(gè)函數(shù)是否相等時(shí) 要緊扣兩點(diǎn) 一是定義域是否相同 二是對(duì)應(yīng)關(guān)系是否相同 2 求具體函數(shù)y f x 的定義域 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 3 分段函數(shù) 兩種 題型的求解策略 1 根據(jù)分段函數(shù)解析式求函數(shù)值 首先確定自變量的值屬于哪個(gè)區(qū)間 其次選定相應(yīng)的解析式代入求解 2 已知函數(shù)值或函數(shù)值范圍求自變量的值或范圍 應(yīng)根據(jù)每一段的解析式分別求解 但要注意檢驗(yàn)所求自變量的值或范圍是否符合相應(yīng)段的自變量的取值范圍 考點(diǎn)1 考點(diǎn)2 考點(diǎn)3 考點(diǎn)4 知識(shí)方法 易錯(cuò)易混 在求分段函數(shù)的值f x0 時(shí) 首先要判斷x0屬于定義域的哪個(gè)子集 然后再代入相應(yīng)的關(guān)系式 分段函數(shù)的值域應(yīng)是其定義域內(nèi)不同子集上各關(guān)系式的取值范圍的并集 微型專題抽象函數(shù)的定義域問題抽象函數(shù)是指沒有明確給出具體解析式的函數(shù) 其有關(guān)問題具有一定難度 特別是求其定義域時(shí) 許多同學(xué)解答起來總感覺棘手 本部分內(nèi)容在高考中一般不會(huì)單獨(dú)考查 但從提升能力方面考慮 還應(yīng)有所涉及 典例若函數(shù)y f x 的定義域是 1 2015 則函數(shù)的定義域是 A 0 2014 B 0 1 1 2014 C 1 2015 D 1 1 1 2014 點(diǎn)撥 先利用換元法求出函數(shù)f x 1 的定義域 則函數(shù)g x 的定義域?yàn)閒 x 1 的定義域與不等式x 1 0的解集的交集 答案 B解析 要使函數(shù)f x 1 有意義 則有1 x 1 2015 解得0 x 2014 故函數(shù)f x 1 的定義域?yàn)?0 2014 所以使函數(shù)g x 有意義的條件是解得0 x 1或1 x 2014 故函數(shù)g x 的定義域?yàn)?0 1 1 2014 故選B- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù) 2.1 函數(shù)及其表示課件 北師大版 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第二 及其 表示 課件 北師大
鏈接地址:http://www.szxfmmzy.com/p-5625852.html