《2019屆高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第五節(jié) 橢圓課時(shí)作業(yè).doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019屆高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第五節(jié) 橢圓課時(shí)作業(yè).doc(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第五節(jié) 橢圓
課時(shí)作業(yè)
A組——基礎(chǔ)對(duì)點(diǎn)練
1.已知橢圓+=1(m>0)的左焦點(diǎn)為F1(-4,0),則m=( )
A.2 B.3 C.4 D.9
解析:由4=(m>0)?m=3,故選B.
答案:B
2.方程kx2+4y2=4k表示焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)k的取值范圍是( )
A.k>4 B.k=4
C.k<4 D.0
b>0),由已知可得拋物線(xiàn)的焦點(diǎn)為(-1,0),所以c=1,又離心率e==,解得a=2,b2=a2-c2=3,所以橢圓方程為+=1,故選A.
答案:A
4.橢圓+=1(a>b>0)的左、右頂點(diǎn)分別為A,B,左、右焦點(diǎn)分別為F1,F(xiàn)2,若|AF1|,|F1F2|,|F1B|成等差數(shù)列,則此橢圓的離心率為( )
A. B.
C. D.-2
解析:由題意可得2|F1F2|=|AF1|+|F1B|,即4c=a-c+a+c=2a,故e==.
答案:A
5.已知F1,F(xiàn)2是橢圓和雙曲線(xiàn)的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且∠F1PF2=,則橢圓和雙曲線(xiàn)的離心率乘積的最小值為( )
A. B.
C.1 D.
解析:如圖,假設(shè)F1,F(xiàn)2分別是橢圓和雙曲線(xiàn)的左、右焦點(diǎn),P是第一象限的點(diǎn),設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為a1,雙曲線(xiàn)的實(shí)半軸長(zhǎng)為a2,則根據(jù)橢圓及雙曲線(xiàn)的定義得|PF1|+|PF2|=2a1,|PF1|-|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1-a2.設(shè)|F1F2|=2c,又∠F1PF2=,則在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1-a2)2-2(a1+a2)(a1-a2)cos ,化簡(jiǎn)得,(2-)a+(2+)a=4c2,設(shè)橢圓的離心率為e1,雙曲線(xiàn)的離心率為e2,∴+=4,又+≥2 =,
∴≤4,即e1e2≥,即橢圓和雙曲線(xiàn)的離心率乘積的最小值為.故選B.
答案:B
6.若x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是________.
解析:將橢圓的方程化為標(biāo)準(zhǔn)形式得+=1,因?yàn)閤2+ky2=2表示焦點(diǎn)在y軸上的橢圓,所以>2,解得0b>0)的離心率等于,其焦點(diǎn)分別為A,B.C為橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn),則在△ABC中,的值等于________.
解析:在△ABC中,由正弦定理得=,因?yàn)辄c(diǎn)C在橢圓上,所以由橢圓定義知|CA|+|CB|=2a,而|AB|=2c,所以===3.
答案:3
9.已知橢圓C:+=1(a>b>0)的左,右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),過(guò)F2作垂直于x軸的直線(xiàn)l交橢圓C于A(yíng),B兩點(diǎn),滿(mǎn)足|AF2|=c.
(1)求橢圓C的離心率;
(2)M,N是橢圓C短軸的兩個(gè)端點(diǎn),設(shè)點(diǎn)P是橢圓C上一點(diǎn)(異于橢圓C的頂點(diǎn)),直線(xiàn)MP,NP分別和x軸相交于R,Q兩點(diǎn),O為坐標(biāo)原點(diǎn).若||||=4,求橢圓C的方程.
解析:(1)∵點(diǎn)A的橫坐標(biāo)為c,
代入橢圓,得+=1.
解得|y|==|AF2|,即=c,
∴a2-c2=ac.
∴e2+e-1=0,解得e=.
(2)設(shè)M(0,b),N(0,-b),P(x0,y0),
則直線(xiàn)MP的方程為y=x+b.
令y=0,得點(diǎn)R的橫坐標(biāo)為.
直線(xiàn)NP的方程為y=x-b.
令y=0,得點(diǎn)Q的橫坐標(biāo)為.
∴||||===a2=4,∴c2=3,b2=1,
∴橢圓C的方程為+y2=1.
10.(2018沈陽(yáng)模擬)橢圓C:+=1(a>b>0),其中e=,焦距為2,過(guò)點(diǎn)M(4,0)的直線(xiàn)l與橢圓C交于點(diǎn)A,B,點(diǎn)B在A(yíng),M之間.又線(xiàn)段AB的中點(diǎn)的橫坐標(biāo)為,且=λ.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)求實(shí)數(shù)λ的值.
解析:(1)由條件可知,c=1,a=2,故b2=a2-c2=3,橢圓的標(biāo)準(zhǔn)方程為+=1.
(2)由題意可知A,B,M三點(diǎn)共線(xiàn),
設(shè)點(diǎn)A(x1,y1),點(diǎn)B(x2,y2).
若直線(xiàn)AB⊥x軸,則x1=x2=4,不合題意.
則AB所在直線(xiàn)l的斜率存在,設(shè)為k,
則直線(xiàn)l的方程為y=k(x-4).
由
消去y得(3+4k2)x2-32k2x+64k2-12=0.①
由①的判別式Δ=322k4-4(4k2+3)(64k2-12)=144(1-4k2)>0,
解得k2<,且
由==,
可得k2=,
將k2=代入方程①,得7x2-8x-8=0.
則x1=,x2=.
又因?yàn)椋?4-x1,-y1),=(x2-4,y2),
=λ,所以λ=,所以λ=.
B組——能力提升練
1.(2018合肥市質(zhì)檢)已知橢圓M:+y2=1,圓C:x2+y2=6-a2在第一象限有公共點(diǎn)P,設(shè)圓C在點(diǎn)P處的切線(xiàn)斜率為k1,橢圓M在點(diǎn)P處的切線(xiàn)斜率為k2,則的取值范圍為( )
A.(1,6) B.(1,5)
C.(3,6) D.(3,5)
解析:由于橢圓M:+y2=1,圓C:x2+y2=6-a2在第一象限有公共點(diǎn)P,所以解得3b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2c,若橢圓上存在點(diǎn)M使得=,則該橢圓離心率的取值范圍為( )
A.(0,-1) B.(,1)
C.(0,) D.(-1,1)
解析:在△MF1F2中,=,
而=,
∴==.①
又M是橢圓+=1上一點(diǎn),
F1,F(xiàn)2是該橢圓的焦點(diǎn),
∴|MF1|+|MF2|=2a.②
由①②得,|MF1|=,|MF2|=.
顯然,|MF2|>|MF1|,
∴a-c<|MF2|0,
∴e2+2e-1>0,
解得e>-1,又e<1,
∴-1b>0)的離心率e=,a+b=3.
(1)求橢圓C的方程.
(2)如圖,A,B,D是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線(xiàn)DP交x軸于點(diǎn)N,直線(xiàn)AD交BP于點(diǎn)M,設(shè)BP的斜率為k,MN的斜率為m.證明:2m-k為定值.
解析:(1)因?yàn)閑==,
所以a=c,b=c.代入a+b=3得,c=,a=2,b=1.
故橢圓C的方程為+y2=1.
(2)證明:因?yàn)锽(2,0),P不為橢圓頂點(diǎn),則直線(xiàn)BP的方程為y=k(x-2),①
把①代入+y2=1,
解得P.
直線(xiàn)AD的方程為y=x+1.②
①與②聯(lián)立解得M.
由D(0,1),P,N(x,0)三點(diǎn)共線(xiàn)知=,
得N.
所以MN的斜率為m=
==,
則2m-k=-k=(定值).
鏈接地址:http://www.szxfmmzy.com/p-6110758.html