【溫馨提示】壓縮包內含CAD圖并可以預覽,直觀呈現(xiàn)眼前查看、盡收眼底縱觀。打包內容里dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,壓縮包內文檔可直接點開預覽,需要原稿請自助充值下載,所見才能所得,請見壓縮包內的文件預覽,請細心查看有疑問可以咨詢QQ:11970985或197216396
在水中利用高密度飛秒激光對玻璃表面進行加工
署光學科學和技術工程學院,德島大學,2-1 Minamijosanjima-cho, Tokushima 770-8506, 日本
收到: 11月13日2006/accepted : 2007年1月29日
在線出版: 29march 2007 ? ?施普林格出版社2007年
摘要 在水中,利用飛秒激光微米大小的顛簸,形成了對玻璃表面的加工。形成凹凸表面的較廣泛的脈沖輻射參數(shù),包括輻射能源和作用位置。凹凸表面,展示了各種各樣的形態(tài)及大小,其形成主要受有關參數(shù)的影響。使用一種液體,即重水,它會被分項和空化氣泡形成后回收,使我們能夠利用高空間密度制造表面的凹凸,這是堅實的涂層利用燒蝕不可能實現(xiàn)的。顛簸理想的安排,在一個玻璃表面是捏造的調整處理的時間間隔較泡沫失蹤的時間長,所產(chǎn)生的作用點是在飛秒激光脈沖附近的水/玻璃界面。
PACS 42.62.Cf; 42.70.Ce; 52.38.Mf; 78.47.+p; 79.20.Ds
1、引言
飛秒激光器是功能強大的工具,為微和納米結構的透明材料,因為它們可以處理高空間分辨率所造成的多光子吸收,并減少熱損傷,由于超短期的互動時間之間的激光脈沖和材料,以及各種物理現(xiàn)象造成的由特高強度的激光脈沖[ 1月11日]。飛秒激光加工正日益應用到發(fā)展的三維立體光學和射流裝置[ 7 , 8 , 10月14日] 。作為透明材料形態(tài)的處理,是關系到熱效應汽化和溶解,由于熱擴散,互動與熱汽柱底部,和一個在激光脈沖低能量密度的區(qū)域,這是高度敏感的不只是該制造材料的物理性質,而且也對激光輻照參數(shù),如波長,脈寬,脈沖能量,數(shù)值孔徑的聚焦光束,和作用的位置。特別是,當一個飛秒激光脈沖的作用點是近表面的透明材料,不同的作用位置,在表面形貌引起了相當大的差異。
利用飛秒激光脈沖進行典型的表面形貌的玻璃處理的重點是,更改一腔一撞時玻璃從外到內的焦點位置的變化。腔周圍是一環(huán)形凸出和分散的碎片。其規(guī)模大小,碎片的數(shù)量也緊密的依賴于集中作用場。在玻璃內一碰到一個直徑從幾百個納米到幾個微米的,是由熔融玻璃表面與熔融玻璃產(chǎn)生的碎片,就會形成一個微型爆炸[ 15-20 ] 。由于一定范圍的協(xié)調中心位置和輻射脈沖能量,表面熔化和內部的微爆炸發(fā)生的同時和顛簸形成的空間十分狹窄。顛簸通常在規(guī)模和結構上展示出較小的變化。
在先前的研究,我們發(fā)現(xiàn),一種透明的涂料涂到玻璃表面使其形成較輕微的凸點更廣泛的協(xié)調中心的立場與沒有涂料涂層的玻璃相比,當涂層厚度是不夠大于長度的焦點貨量時,可以使玻璃減少玻璃碎片的數(shù)量 [ 19 , 21 ] 。此外,我們發(fā)現(xiàn),當涂層厚度是少于長度的焦點量時,即當涂層表面燒蝕是由一個單一的激光脈沖的作用在透明涂層和玻璃邊境之間時,顛簸造成了比使用了厚厚的涂料超過了一定的范圍 [ 20 ] 。從這些調查,我們相信,涂層材料在燒蝕的焦點量的數(shù)量,取決于對涂層厚度,同時影響了等離子體時所產(chǎn)生的燒蝕涂層屏蔽效應。因此,規(guī)模和結構所形成的凸點是可以改變的。透明涂層的方法具有劣勢的空間密度的顛簸是有限的幾個微米,因為消融的透明涂料。為了實現(xiàn)可控制的高密度的凹凸,在對透明涂料進行飛秒激光加工的時候,在有可能的情況下使用液體對透明材料進行加工,因為液體分項和氣泡的形成后可以
循環(huán)使用。在水中制作復雜的結構對硅表面的飛秒激光加工已被證明[ 22-24 ] 。
在本文中,我們描述了在水形成高密度微米大小的顛簸飛秒激光加工技術。在第一節(jié) ,我們描述了實驗裝置和程序。在第三節(jié),我們描述了實驗結果。我們調查了影響輻照參數(shù)的因素,包括能源和焦點的位置,形態(tài)及顛簸的大小。我們證明了,通過調整處理的時間間隔較在水/玻璃界面附近所產(chǎn)生的飛秒激光脈沖的泡沫的失蹤的時間長[ 25-28 ],我們可以制造出對玻璃表面形成高密度的顛簸理想的結構。在第四節(jié),我們總結了我們的研究。
2 實驗裝置和程序
實驗裝置由一個擴增飛秒激光和光學顯微鏡構成,如圖1所示。安裝使用和我們過去的工作是一樣的[ 19 , 20 ] 。擴增的飛秒激光脈沖的產(chǎn)生與峰值波長800納米, 1年期? 150財政司司長,最大重復率1千赫。照射脈沖能量E在該樣本控制中性密度過濾器,并給出了該產(chǎn)品的能源測量之前,引入激光脈沖到光學顯微鏡(奧林巴斯, ix70 )和透射光學顯微鏡,其中包括一名40 ×物鏡(數(shù)值孔徑,鈉= 0.65 ) 。透射顯微鏡是0.69 。在加工區(qū)下觀察一個慣常的負責電荷耦合器件( CCD )與幀速率30幀/秒傳感器轉換的影象。激光脈沖的焦距 z被定義為顯微鏡的射線沿光軸移動的距離。零位置( z = 0 )被定義為,形成了玻璃表面照射激光脈沖與附近的燒蝕閾值的能源結構位置。
樣本的結構如圖1所示。該樣本準備他們的目標,玻璃,窗戶玻璃為sandwiching水,和兩個間隔眼鏡,厚度130 μ m的如下。其中在乙醇和純凈水中受到超聲波清洗影響的4普通顯微鏡封面紙(松波)已經(jīng)準備。他們是目鏡, sandwiching水,物鏡,和兩個間隔130 μ m的鏡片。聚甲基丙烯酸甲酯(聚甲基丙烯酸甲酯)與甲苯溶劑被用來形式的墻壁上的窗口玻璃。
經(jīng)過充分蒸發(fā)溶劑間隔器的鏡片被拆除,并且形成一個由聚甲基丙烯酸甲酯的墻壁上的玻璃組成的邊長10 -15毫米的空間。水從一個小腔體內下降并且被加工的玻璃被含有少量的聚甲基丙烯酸甲酯的一種膠水固定在腔體上。在這個實驗中,用氘氧化氮(重水,以下簡稱僅僅作為“水” ),因為它的低線性吸收周圍的波長800納米。金國處理后,被加工的玻璃在腔體處被切除,并且經(jīng)過超聲波在純凈水和乙醇中的清洗。加工區(qū)的表面結構被原子力顯微鏡觀察( AFM ;數(shù)碼文書,直徑3000 )。
3、實驗結論
圖2顯示了在水中處理的一系列機構,Z從-4.0到12.0 μ m的時,能量E是2.1 μ j.
數(shù)字第2 A和B顯示的AFM圖象及其相應的輪廓,其垂直范圍是± 500 nm左右。圖表2C和D顯示了利用傳輸光學顯微鏡觀察加工領域上方的影象。圖2e顯示直徑和高度的顛簸,獲得了從原子力顯微鏡的觀察,和從一個側面觀察長度的空白。形成玻璃表面凹凸較廣泛的Z 的范圍是從-4.0到8.0 μ m。伴隨著z的增加,高度和直徑的顛簸也增加。當z為6.0 μ m的時候,形成最大高度400 nm和直徑為3.6 μ m的凸起。當Z為8.0 μ m的時候,形成一個高度為50 nm的凸起。當z大于8.0 μ m的空隙,在玻璃內的玻璃表面上沒有形成任何結構。
凹坑的直徑隨著Z的增加而增加。當 z是4至12 μ m時,形成的凹坑直徑幾乎相等。經(jīng)過詳細的觀察,在側視圖中顯示的圖2D中,我們發(fā)現(xiàn)孔洞有不同的灰度級時, z是介乎于6.0和8.0 μ m的。暗色調的空隙下,高顛簸在z = 3.0 μ m的和Z = 6.0 μ m的灰度比那些空洞完全在玻璃內形成的要大。我們預期的孔洞高凸點比其它處有較低的密度,因為一個內部的微爆炸使玻璃材料從作用點處飛散,形成坑洞,致使密度降低。
這顛簸的形成和在我們先前研究的玻璃在一個透明的聚合物涂層處理后的現(xiàn)象是一樣的。凸點的形成規(guī)律是在從玻璃表面由一個屏蔽效應所產(chǎn)生的等離子體消融聚合物和物理阻斷聚合物提供的物質的排放量的基礎上。在目前研究的一點不同是,在水中玻璃加工凸起的形成Z 在一定的范圍內,如圖3所示 。輻射光束參數(shù)幾乎和我們以前的實驗一樣(顯示于圖3在[ 19 ] ) 。輻照能量為E = 0.69 μ j. 當加工玻璃的聚合物涂層,凸點的形成時z是- 1.0至4.0 μ m的范圍內[ 20 ],而當處理在水中進行時,凸起形成時, z是在-4.0至7.0 μ m的范圍內。主要差異的原因是水的物理性阻擋是弱于聚合物涂層。這是下一段進一步證明的結果,幾微焦耳以上的高脈沖能量進行結構加工。
圖4顯示的是在原子力顯微鏡觀察的當z = 0時,進行結構加工時的各種能量e的圖像。當E為0.17至6.9 μ J時,凸起形成,其結構隨著能量E急劇變化.當能量e增加至4.1 μ j時,凸起的直徑和高度也隨著增加. 當能量E為4.1 μ J時,凸起的直徑為5.1 μ m,高度為1.57 μ m。隨著能量E的增加,凸起的直徑和高度隨之減小。當e < 2.1 μ J時,有凸起的周圍邊緣有小碎片。然而,當e ≥ 2.1 μ J時,碎片圍繞著邊緣分布,并且碎片的數(shù)目隨著能量E的增加而增加。碎片分布的區(qū)域在圖4中用實線畫的區(qū)域表示。在水進行加工比應用聚合物涂層進行加工產(chǎn)生更多的碎在水中片散落在凸起的周圍。這就進一步證明了,水比聚合物涂層具有較弱的物理阻塞。大部分的碎片在水中利用超聲波清洗是不會被清除的。因此,玻璃材料碎片分散在液體狀態(tài)在玻璃/水界面上,使玻璃表面得以鞏固。
圖5顯示凸起高密度地分布在一條直線。線性安排的凸起表示了在空間激光脈沖照射的間隔小于單一的凸起的直徑。在這種情況下,當空間間隔D是設定為2.0 μ m的條件下E為3.5 μ j和Z為6.0 μ m時,形成一個直徑為3.6 μ m和高度56 nm的單一的凸起。通過掃描顯微鏡進行加工是為了使一個單一的脈沖照射在每一個位置的重復率r為1 Hz 。凸起的線性安排形狀由D來控制,如圖6a和b。當D是0.8 μ m時,凸起平穩(wěn)地形成一條線。當D是5.0 μ m的時候, 也就是說 ,當D是不夠大于凸點直徑時,凸起就形成了孤立的山峰。
在形成高密度的凸起時,除了考慮E和D外,還要慎重選擇 Z和R。在 Z = 6.0 μm, E = 2.1 μJ, D = 0.5 μm和 R = 1Hz的照射條件下,能夠順利的形成一條直線凸起,如圖6c所示。直線凸起的直徑和高度分別為4.2 μm 和60 nm。當在Z = 3.0 μm, E = 2.1 μJ, D =0.5 μm,和R = 1Hz的照射條件下,就會形成許多峰值亞微米大小的凸起。這個形狀不規(guī)則的結構是由一個前激光脈沖形成的單一的凸起被下一個激光脈沖摧毀所形成的,因為當作用點在玻璃表面附近時,高密度的能量會使消融玻璃表面,形成凸起。
形成高密度的凸起時,選擇重復率R也很重要。圖6e和F中顯示了通過顯微鏡觀察在R = 2和5hz 時進行結構加工得到的不同影象。其他條件( z = 6.0 μ m,E= 2.1 μ J和D= 0.5 μ m )一樣的情況下,那些實驗結果如圖6C所示。這種差異不僅取決于R,而且與在水/玻璃界面等離子體產(chǎn)生的氣泡消失的時間密切相關。
圖7 A-D顯示當E = 4.8 μ j和Z = 0.0 μ m時,通過CCD圖像傳感器觀察到的在水/玻璃界面泡沫產(chǎn)生。當泡沫的大小少于?10 μ s時[ 28 ] ,它不能一個普通的CCD圖像傳感器捕捉到。在圖7 A – C上只顯示了收縮泡沫的影象。在圖 7D中,顯示了激光加工結構的循環(huán)模式,因為它暫時沒有改變。觀察到氣泡產(chǎn)生的時間定義為t = 0時刻。氣泡失蹤的時間Td定義為氣泡產(chǎn)生到氣泡消失的時間間隔。因為使用30幀/秒的CCD圖像傳感器,時間分辨率的測量是33ms。圖7e中顯示了脈沖能量e引起的氣泡消失的時間Td的關系。我們知道氣泡主要由氣態(tài)氫,氧,和水汽組成。激光在氣泡內照射相當于激光照射的時候沒有水,而是在在空氣中直接照射。因此,當輻射的時間間隔小于氣泡消失的時間,抑制從玻璃表面排放的物質的物理屏蔽效應變?yōu)楹鼙∪?,第一個激光脈沖產(chǎn)生的凸起被第二激光脈沖摧毀,從而形成一個不規(guī)則結構。如圖6F所示,不規(guī)則的結構下形成的重復率5hz ,因為當E為2.1 μj時,Td小于 250ms。
4、結論
我們已證明了在水中用飛秒激光對玻璃表面加工凸起的形成。我們研究了輻射能量和飛秒激光脈沖的焦點對凸起形狀的影響。高密度的凸起的形成原因是照射激光脈沖到作用點之間的時間間隔小于一個單一凸起的直徑。形成良好的形式、高密度的凸起,選擇適當?shù)膮?shù)是很重要的,包括加工時間間隔,照射能量,作用位置,以及空間的間隔。合理的安排高空間密度的凸起要求對玻璃表面進行加工處理的時間間隔比由飛秒激光脈沖水/玻璃界面加工時產(chǎn)生的氣泡消失的時間間隔更重要。
鳴謝
這項工作得到了創(chuàng)業(yè)企業(yè)孵化器實驗室,德島大學,旭硝子財團,村田科學基金會,科學和技術孵化計劃,日本科學技術廳先進科技的科技支持和贈款援助,和由教育部,文化,體育,科學和技術的科研所(B) # 16360035的大力支持。
參考文獻
1 D. Du, X. Liu, G. Korn, J. Squier, G.Mourou, Appl. Phys. Lett. 64, 3071
(1994)
2 H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto,
M. Obara, Appl. Phys. Lett. 65, 1850 (1994)
3 B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys.
Rev. Lett. 74, 2248 (1995)
4 D. von der Linde, H. Schüler, J. Opt. Soc. Am. B 13, 216 (1996)
5 H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack,
E.E.B. Campbell, Appl. Phys. A 62, 293 (1996)
6 K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729
(1996)
7 E.N. Glezer, M. Milosavljevic, L. Huang. R.J. Finlay, T.-H. Her,
J.P. Callan, E. Mazur, Opt. Lett. 21, 2023 (1996)
8 E.N. Glezer, E. Mazur, Appl. Phys. Lett. 71, 882 (1997)
9 K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71,
3329 (1997)
10 Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, K. Hirao, Japan.
J. Appl. Phys. 37, L94 (1998)
11 M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki,
J. Nishii, H. Misawa, Japan. J. Appl. Phys. 37, L1527 (1998)
12 H.-B. Sun, Y. Xu, S. Matsuo, H. Misawa, Opt. Rev. 6, 396 (1999)
13 K. Yamada, W. Watanabe, Y. Li, K. Itoh, J. Nishii, Opt. Lett. 29, 1846
(2004)
14 K. Sugioka, Y. Cheng, K. Midorikawa, Appl. Phys. A 81, 1 (2005)
15 Z. Wu, H. Jiang, Z. Zhang, Q. Sun, H. Yang, Q. Gong, Opt. Express 10,
1244 (2002)
16 F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf,
B.N. Chichkov, Appl. Phys. A 77, 229 (2003)
17 E. Vanagas, I. Kudryashov, D. Tuzhilin. S. Juodkazis, S. Matsuo, H. Mi-
sawa, Appl. Phys. Lett. 82, 2901 (2003)
18 Y. Hayasaki, H. Takagi, A. Takita, H. Yamamoto, N. Nishida, H. Mi-
sawa, Japan. J. Appl. Phys. 43, 8089 (2004)
19 D. Kawamura, A. Takita, Y. Hayasaki, N. Nishida, Appl. Phys. A 82, 523
(2006)
20 D. Kawamura, A. Takita, Y. Hayasaki, N. Nishida, Appl. Phys. A 85,39
(2006)
21 Z.L. Li, T.T. Lin, P.M. Moran, Appl. Phys. A 81, 753 (2005)
22 K. Katayama, H. Yonekubo, T. Sawada, Appl. Phys. Lett. 82, 4244
(2003)
23 M.Y. Shen, C.H. Crouch, J.E. Carey, E. Mazur, Appl. Phys. Lett. 85,
5694 (2004)
24 H. Yonekubo, K. Katayama, T. Sawada, Appl. Phys. A 81, 843 (2005)
25 E.N. Glezer, C.B. Schaffer, N. Nishimura, E. Mazur, Opt. Lett. 22, 1817
(1997)
26 A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz,
D.X. Hammer, G.D. Noojin, B.A. Rockwell, R. Birngruber, Appl. Phys.
B 68, 271 (1999)
27 E. Abraham, K. Minoshima, H. Matsumoto, Opt. Commun. 176, 441
(2000)
28 C.B. Schaffer, N. Nishimura, E.N. Glezer, A.M.-T. Kim, E. Mazur, Opt.
Express 10, 196 (2002)
圖1實驗裝置和結構的范例。加工時間隔器的眼鏡被拆除。
圖2 (a)在原子力顯微鏡觀察下加工區(qū)域的圖像及(b)輪廓。輻射能量為2.1 μ j時,垂直范圍是± 500 nm左右。 (c)頂端和(d)光學顯微鏡觀察的那一面。 (e)與焦點位置相對應的凸起的直徑和高度,與玻璃間隔之間的長度。
圖3 當E=0.69 μ j時,凸起直徑和高度隨焦點的改變的變化。
圖4通過原子力顯微鏡觀察到的圖像,當(a)E = 0.69 μ J, (b)E= 2.8 μ J,(c)E= 4.1 μ J,(d)E= 4.8 μ J,(e)E = 5.5 μ J和(f)E = 6.9 μ j時。 (g)凸起的直徑和高度和碎片直徑隨照射能量的變化。
圖5當E = 3.5 μ J,z = 6.0 μ m, R = 1Hz,和D = 2.0 μ m時通過原子力顯微鏡觀察線性凸起。(a)及(b)是線性分布的凸起的基本結構。垂直方向的高度為± 250 nm和其橫向長度為60 μ m。
圖6各種條件下的表面結構。在相同的輻射能量為E = 2.1 μj的情況下。 (a)及( b ) , z = 6.0 μ m和R = 1hz,脈沖輻射的空間間隔分別為(a) D= 0.8 μ m和( b ) D= 5.0 μ m。 (c)和(d), R = 1 Hz和D = 0.5 μ m,焦點分別為(c) z= 6.0 μm(d) z= 3.0 μ m。在(e)和(f)中 , z = 6.0 μ m和D = 0.5 μ m,重復率分別為(e)R= 2 Hz和(f)R= 5 Hz。原子力顯微鏡圖像8 × 8 平方微米。
圖7通過CCD圖像傳感器觀察氣泡水/玻璃界面的產(chǎn)生,當時間間隔(a)t= 2 / 30 , (b) 8 / 30 , (c) 12/30日,和(d) 13 /30 (e)氣泡消失時的脈沖能量。 三次測量的脈沖能量都用圓點表示。